
Budapest University of
Technology and Economics

Applied Mathematics Master of Sciences Thesis

The use of Fleishman distribution in the
empirical investigation of statistical tests

Author:

Tamás Ferenci

External supervisor:

Prof. Jenő Reiczigel DSc

Internal supervisor:

Dr. Márton Balázs PhD

2012

Abstract

Statistical tests are among the most important tools of modern statistics. Given a population

which was only observed partly, we can not decide whether a statement H0 is true if it pertains

to the whole population. However, statistical test can give a probabilistic answer on whether

H0 stands or not, based only on the observed part of the population (called sample). Statistical

tests typically impose more or less presumptions about the population; they are guaranteed to

produce valid (probabilistic) answers only if these presumptions are met. Practically, the two most

important property of a statistical test is robustness and power. Robustness measures how valid

the test remains if its presumptions are not met, while power measures how well the test can

detect that H0 is not true, if it in fact does not stand. Practically, the most problematic task is to

investigate robustness for tests which have a distribution presumption on the population (called

parametric tests), and to investigate power for tests that do not have such assumption (called non-

parametric tests). The common point in these (which presents their difficulty) is that both require

to investigate the operation of a test on a population with non-specified distribution. (In robustness

testing for the parametric case, there is a specified distribution in the presumptions, but we want

to investigate the effect of deviating from it; in power testing at the non-parametric case, we stick

to the presumptions of the test, but they do not specify a distribution.) For practical reasons,

these non-specified distributions are usually characterized by their first four moments, so the first

problem is to find a distribution family that can be parametrized to have arbitrary skewness and

kurtosis. (Setting arbitrary mean and variance is trivial by linear scaling.) Common distributions

do not have this property; in this thesis, we introduce – in detail – a well-known distribution family,

the Fleishman distribution, that does have. In most of the cases, the analytical investigation

with Fleishman distribution (or any other similar distribution) is infeasible or impossible. Thus,

robustness and power are typically investigated empirically, using Monte Carlo simulation: many

sample from the ”non-specified” distribution (i.e. a distribution with pre-specified skewness and

kurtosis) are generated, the test is applied to them, and results are recorded to determine robustness

or power. With enough replications, this sufficiently converges to the true value of the investigated

parameter. The method can be than re-iterated for different levels of skewness and kurtosis. This,

however, has enormous computation requirement, which is infeasible even on modern personal

computers. To alleviate this issue, we developed a program according to the novel principle of

General Purpose GPU-computing, which harnesses the GPUs of modern video cards, as they can

offer a performance that was previously only achievable with supercomputers for certain problems.

More specifically: for problems that are computationally intensive (not I/O-intensive) and exhibit

high data parallelism – just like Monte Carlo simulation for investigating statistical tests. We

implemented a program, a simulational environment that is able to perform more than 60 million

hypothesis testings per second (one-sample t-test, n = 10) even on a low-end video card. The

environment is modular and highly flexible, so that it facilitates further extension. The program

is introduced in detail in this thesis. Using this program, we systematically investigated many

commonly used statistical test for robustness (parametric tests) and power (non-parametric tests).

The results are presented and briefly discussed in this thesis. As a conclusion, we also briefly

point out one limitation of the application of Fleishman distribution for this purpose to present a

balanced discussion.

Acknowledgments

First of all, I would like to say thanks to Dr. Balázs Kotosz, my teacher at the Corvinus University

of Budapest (CUB), with whom I started research about the robustness of statistical tests at the

Department of Statistics of the CUB. He was the first to motivate me to begin investigating this

fascinating topic of modern statistics. As far as CUB is concerned, I would also like to say special

thanks to Prof. László Hunyadi, who was the reviewer of some of my early papers on this topic.

He has really set a standard for me with his selfless, wholehearted support as evidenced by the

amount of work he dedicated to provide helpful reviews for papers of students whom he has never

even met before. I am also indebted to my present thesis advisors for their support in carrying

out the research for this thesis. It was an honor working with Prof. Jenő Reiczigel, president

of the Hungarian Clinical Biostatistical Society, who is one of the most well-known Hungarian

biostatisticians. He always had another innovative idea, I have never even thought of, on how

to improve my work. I am also deeply grateful to Dr. Márton Balázs from the Department of

Stochastics at the Budapest University of Technology and Economics. Although he is primarily

engaged in researching probability theory, for me, his delightful classes laid the solid foundations

for statistics as well.

Contents

1 Introduction 1

1.1 Probability theory foundations . 1

1.2 Statistical hypothesis testing . 3

1.3 Properties of statistical tests . 5

1.3.1 Power of a statistical test . 5

1.3.2 Robustness of a statistical test . 6

1.4 Analytical and empirical investigation of statistical tests 8

1.5 Overview of the literature . 12

1.6 Organization of this thesis . 12

2 Fleishman distribution 14

2.1 Origin and rationale of Fleishman distribution . 14

2.2 Generalizing the Fleishman distribution . 17

2.3 Solving the FD (4) . 18

2.4 Advantages and disadvantages of using FD (4) . 19

2.4.1 Advantages of using FD (4) . 19

2.4.2 Disadvantages of using FD (4) . 19

2.5 Further possibilities with the Fleishman distribution 20

2.5.1 Probability density function of Fleishman distribution 20

2.5.2 Using FD (n) for n > 4 . 23

2.5.3 Using other initial distributions . 23

2.5.4 Multivariate distributions . 23

3 Computational aspects of Monte Carlo simulation 25

3.1 Overview of the developed Monte Carlo simulational environment 25

3.2 The application of GP-GPU to speed up calculations 26

3.3 Implementation details . 30

3.4 Visualization of the results . 32

4 Empirical investigation of statistical tests with Fleishman distribution 36

4.1 Robustness testing of parametric tests . 36

4.1.1 One-sample, two-sided z-test . 36

4.1.2 One-sample, two-sided t-test . 37

4.1.3 Two independent sample, two-sided t-test 39

4.1.4 K independent sample ANOVA . 42

4.2 Power testing of non-parametric tests . 42

4.2.1 Two-sample, two-sided Mann-Whitney U -test 43

i

5 Limitations of Fleishman distribution 46

5.1 A problem statement . 46

5.2 Comparion with mixture normal distributions . 48

6 Conclusion 50

A Wolfram Mathematica source codes 52

A.1 Coverage of important distributions . 52

A.2 Power of the z-test . 52

A.3 Robustness of the z-test . 53

A.4 Coverage of FD (4) . 53

B CUDA source codes 54

B.1 Declarations . 54

B.2 Mersenne twister random number generation . 55

B.3 Statistical tests . 55

B.4 Kernel . 56

B.5 Solving the Fleishman equations . 57

B.6 Main program . 58

C R source codes 62

C.1 Visualization of the results . 62

ii

List of Figures

1.1 Coverage of important distributions on the skewness (γ3)-kurtosis (γ4) space: normal

(green square), uniform (purple circle), exponential (blue diamond), lognormal (cyan

line), Pareto (brown line). Shaded red area indicates the impossible region (where

no distribution exists). See Section A.1. 7

1.2 Power function of the z-test (with all presumptions met). See Section A.2. 9

1.3 Power function of the z-test (with all presumptions met) approximated with Monte

Carlo simulation with different number of replications. See Section A.2. 9

1.4 Robustness of the z-test with respect to non-normality: Γ-background distribution

with parameters a and b. Vertical axis shows actual α. See Section A.3. 10

1.5 Robustness of the z-test with respect to non-normality: Γ-background distribution

with parameters a and b = 2. Vertical axis shows actual α. See Section A.3. 11

1.6 Robustness of the z-test with respect to non-normality approximated with Monte

Carlo simulation (R = 100000): Γ-background distribution with parameters a and

b = 2. Vertical axis shows actual α. See Section A.3. 11

1.7 Schematic representation of the complexity of the analytical and the empirical ap-

proach as the problem size increases. 12

2.1 Region of existence of FD (4) Fleishman distribution (light blue shading). Border

for the theoretically possible region is drawn in red; dark blue line is the quadratic

approximation of Equation (2.20) for the lower bound of the region of coverage. . . 18

2.2 Region of existence of FD (4) Fleishman distribution restricted to transforming

polynomials that are strictly monotonically increasing (light blue shading). Border

for the theoretically possible region is drawn in red; dark blue line is the quadratic

approximation of Equation (2.20) for the lower bound of the region of coverage for

the entire FD (4) family. 20

2.3 Coverage of Fleishman distribution with different initial distributions: standard

normal (left), uniform (center), standard logistic (right). 24

3.1 Broad overview of the mechanism of our Monte Carlo simulation environment. . . 27

3.2 Skewness-kurtosis space with theoretical boundary for distributions (blue), lower

bound of the coverage of Fleishman distribution (red), and bound of ”kurtosis above

minimum” (for a given skewness) in yellow. Dots indicate a typical grid, where the

properties of the statical test are analyzed. 28

3.3 Illustration for the effect of the number of Monte Carlo replications on the fluctuation

of the result. 28

3.4 Comparison of the architecture of a CPU (left) and a GPU (right). Source: [43]. . 29

3.5 Hierarchy of threads, blocks and grids in the CUDA-model. Source: [43]. 31

3.6 User interface of the developed simulational environment during running. 33

iii

3.7 User interface of the developed simulational environment after completing simulations. 34

4.1 Robustness of the one-sample, two-sided z-test with respect to non-normality with

Fleishman distribution (nominal α = 0.05) . 37

4.2 Robustness of the one-sample, two-sided t-test with respect to non-normality with

Fleishman distribution (nominal α = 0.05) . 38

4.3 Illustration of the distortion effect of using ”kurtosis above minimum” instead of

kurtosis (see also Figure 3.2). 40

4.4 Impact of sample size on the robustness of the one-sample, two-sided t-test (nominal

α = 0.05). 41

4.5 Robustness of the two independent sample, two-sided t-test with respect to non-

normality with Fleishman distribution (nominal α = 0.05) 42

4.6 Robustness of the K independent sample ANOVA (K = 3) with respect to non-

normality with Fleishman distribution (nominal α = 0.05) 43

4.7 Robustness of the two-sample, two-sided Mann-Whitney U -test with respect to non-

normality with Fleishman distribution (nominal α = 0.05) 44

4.8 Power analysis of the two-sample, two-sided Mann-Whitney U -test for a shift of

δ = +0.5. 44

5.1 Pdf of the mixture normal distribution 3
4N (0, 1)+ 1

4N
(
2, 22

)
(blue) and the Fleish-

man distribution with identical first four moments (red). 47

5.2 Probability density functions f1 (x) and f2 (x). 48

iv

List of Tables

3.1 Parameters of the GPU used to perform the calculations that are presented in this

thesis. 33

v

List of abbreviations

Abbreviation Meaning

pdf Probability density function

cdf Cumulative distribution function

iid Independent and identically distributed

TVD Total variation distance

wlog Without loss of generality

w.r.t. With respect to

GPU Graphical Processing Unit

GP-GPU General Purpose GPU computing

vi

Chapter 1

Introduction

The investigation discussed in this thesis was motivated by problems that are frequently encoun-

tered in biostatistics. Similarly to many other applied statistical fields, statistical tests are among

the most basic tools that are used in biostatistics. However, especially in medical literature, they

are handled somewhat carelessly: although most of these tests have presumptions, the validity of

these are often not verified, despite the fact that small samples (when one can not rely on asymp-

totic properties) and unusual distributions are prevalent in biostatistics. This raises the question

of robustness of statistical tests.

The investigation of robustness has many theoretical and practical problems – this was the

direct motivation of this thesis. We have, however, widened our scope, and present results that

can be applied to the investigation of more general properties of statistical tests. We will utilize an

empirical approach, based on Monte Carlo simulation, which can not give analytical results, but –

in exchange – can handle problems almost irrespectively of their complexity.

This Chapter is aimed to present a general overview of the preliminaries of the topic that is

about to be covered in the present thesis. We will review the basic definitions from probability

theory and statistics, outline the motivation for this research in more detail (including the need

and impact from the statistical point of view) and outline the path to the deeper discussion of the

particular questions.

First, we begin with a very compact summary of the most important definitions from probability

theory in Section 1.1, just to ensure that a uniform terminology is used throughout this thesis.

Section 1.2 gives a broad overview on the theory of statistical hypothesis testing. We inten-

tionally do not get into technical details, our aim is to provide a general picture of this crucially

important area of modern statistics. After introducing the concept of statistical tests, we discuss

the two most important properties of such tests in Section 1.3. These properties will be in the

focus of our present work. To more specifically introduce the closer topic of this thesis, we first

review (in detail) the possible ways to investigate these properties in Section 1.4.

The already existing literature on this topic is briefly review in Section 1.5. Section 1.6 concludes

this chapter by describing the organization of this thesis.

1.1 Probability theory foundations

We will now briefly review a few fundamental concepts and definitions from probability theory

[10]. Whenever these are referenced in this thesis, they are understood the way defined here.

We call a phenomenon K a random experiment if it has known possible outcomes, but there is

no way to deterministically decide which will be the outcome when the experiment is performed.

1

These possible outcomes are called elementary events (usually denoted with ω); exactly one is

realized when the random experiment is performed. The set of all elementary events is called event

space, and is denoted with Ω. We define a σ-algebra on Ω, denoted with F . Members of this set

are called events (usually denoted A,B,C, . . .), they are thus subsets of Ω.

We call a set function P : F → R probability, if it satisfies the following properties:

1. Non-negativity: P (A) ≥ 0 for every A ∈ F .

2. Normed: P (Ω) = 1.

3. σ-additive: if the – countably many – events A1, A2, . . . are mutually exclusive, i.e. Ai∩Aj = ∅
for i 6= j then

P

⋃
i

Ai

 =
∑
i

P (Ai) . (1.1)

The triple (Ω,F ,P) is called (Kolmogorov) probability space.

We call a function X : Ω→ R a random variable if it is measurable, i.e. if the preimage of every

Borel-measurable set B of the real line satisfies the following: X−1 (B) ∈ F .

The function F : R → [0, 1] with the definition1 F (x) := P (X < x) is called the cumulative

distribution function (or cdf, in short) of the random variable X.

If P is absolutely continuous with respect to (w.r.t.) the Lebesgue measure on the real line

(such distributions are called simply continuous distribution) then F (x) is also continuous, and

has a derivate dF (x)
dx =: f (x) or, to put it another way, there exists a function f such that∫ a

−∞ f (x) dx = F (a). This f function is called probability density function (or pdf in short).

In this thesis, we will confine ourselves to continuous distributions/variables. Consider a con-

tinuous random variable X and a – transformation – function g : R → R (possibly the identity

function). The expected value of g (X) is denoted with E
(
g (X)

)
and is defined as

E
(
g (X)

)
:=

∫ ∞
−∞

g (x) f (x) dx, (1.2)

if this integral exists and is finite.

The so-called pth moment of a random variable X is denoted with µp, and is defined by

µp := EXp =

∫ ∞
−∞

xpf (x) dx, (1.3)

if the integral exists and is finite.

The pth central moment of a random variable X is denoted with µ′p, and is defined by

µ′p := E
[
(X − µ1)

p]
=

∫ ∞
−∞

(x− µ1)
p
f (x) dx, (1.4)

if the integral exists and is finite.

Specifically µ1 = EX is called the expected value of X, µ2−µ2
1 =: D2 (X) is called the variance

of X,
µ′3
µ

3/2
2

is called the skewness and
µ′4
µ2

2
is called the kurtosis of X.

1Note that P (X ∈ A) is essentially just an abbreviated notation for P
({
ω : X (ω) ∈ A

})
.

2

1.2 Statistical hypothesis testing

Inferential statistics, and hypothesis testing in particular, is one of the most important chapters

of modern statistics. Tracing its root back to the end of the 19th and the beginning of the 20th

century, it became widely used after the pioneering work of Ronald Fisher, Jerzy Neyman and

Egon Pearson, among others [21]. The first applications included agrometrics, industrial quality

control, followed by diverse areas of science and technology. It has given rise to an entirely new

approach in biostatistics, and medical statistics, playing role in the introduction of the Evidence

Based Medicine (EBM) principle [5].

Statistical tests are one of the core areas of inferential statistics. (More precisely its frequentist

approach, which we will only consider in the present thesis.) First, we precisely define the concept

of statistical test.

Consider a statistical space (Ω,F ,P) (that is: Ω is the sample space, F is a σ-algebra on Ω

and P is a collection of probability measures such that its elements P all form a correctly defined

probability space (Ω,F ,P)). We will mostly consider dominated spaces, which have the property

that there exists a σ-finite measure such that every P ∈ P is absolutely continuous with respect to

this measure. (In effect, this only states that the measures are either discrete, or continuous.) We

say that the space is parametric, if P is parameterizable with the elements of a (not necessarily

one dimensional) set, that is: P = {Pθ : θ ∈ Θ}. For example, P might be the family of normal

distributions, in this case Θ = R×
[
0,∞) , so every (two-dimensional) parameter θ =

(
µ, σ2

)
∈ Θ

exactly defines one probability measure (N
(
µ, σ2

)
in this example).

Statistical hypothesis testing deals with the investigation of statements (called hypotheses)

made on a population, of which we know only a part (called sample). To precisely define these

terms: the set to which our question pertains is called the population. In this thesis, we will confine

ourselves to univariate statistics, so the set can be considered as a set of random variables. It might

be finite (when it can be represented with the realized values those random variables took, such

as a set of real, but unknown numbers (X1, X2, . . . , XN), where N is the size of the population)

or infinite (when it can be represented with the common (background) distribution of the random

variables). Either way, we presume that have been able to observe (for example measure) the

values of only n elements from the population (n < N , if the size of the population is finite). This

set (X1, X2, . . . , Xn) = X is called the sample. (Mostly we presume independent sampling.) This

is, of course, only true, if we are before the sampling, after it, we have an (x1, x2, . . . , xn) = x

realization from the above random variables.

In parametric cases, the hypothesis can always be formulated as statements about where the θ

parameter is in Θ. According to the tradition of frequentist hypothesis testing, these statements

are always formulated in pairs, called null hypothesis (H0) and alternative hypothesis (H1) such

that they are mutually exclusive statements on θ, but one of them is surely true:

H0 : θ ∈ Θ0 (1.5)

H1 : θ ∈ Θ1,

where Θ0 ∩Θ1 = ∅, but Θ0 ∪Θ1 = Θ.

To mention a practical example, we can consider the population of healthy Hungarian males

aged 20-25 (as a statistical population; this is strictly speaking a finite population, but can be

considered as a population described by a background distribution for any practical purpose)

where the body height is the parameter of interest. We want to answer whether it is 175 cm on

3

average, precisely, our hypotheses are:

H0 : µ = 175 =: µ0 (1.6)

H1 : µ 6= 175 = µ0,

where µ is the expected value of the background distribution. We have n = 30 males, who where

randomly sampled from the above population. The question is: what can we say about this

statement (that pertains to a population parameter!) if we only have the heights of the 30 males

in the sample?

Statistical hypothesis testing aims to decide between these alternatives H0 and H1. (In non-

parametric setting, the hypothesis can not be formed in such way (for example, they might pertain

to the equality of two distributions, regardless of what their distribution is), but it does not

essentially change our discussion.) Denoting the space of possible samples with X we can say that

there is a partitioning X = Xr ∪ Xa (Xr ∩ Xa = ∅), such that for samples in Xr the decision is to

reject the null hypothesis, i.e. accept the alternative hypothesis (rejection region), for samples in

Xa (acceptance region), we accept the null hypothesis.

To perform this decision making, hypothesis testing utilizes a so-called test statistic, which is

nothing else then a function (typically: real-valued function) on the sample, i.e. T (X) : X 7→ R.

By using the test statistic we map the problem from X to R, thus the rejection and acceptance

regions are also mapped to R. Typically, they are defined either by one (one-sided test) or two

(two-sided test) cut points (partitioning R into an acceptance region and one or two rejection

regions). These cut points are called critical values.

It can be immediately seen that it is not generally possible to create acceptance and rejection

regions that universally guarantee correct decision about H0. Consider our previous example: if

the body height follows normal distribution in the population, then there is a non-zero chance that

any sample value falls into any (true) interval on the real line, irrespectively of the expected value

of the population distribution! (As the support of any normal distribution is R.)

Hence, the best we can do is to find a T such that given H0, the distribution of T (X) (also

called the null distribution) is known a priori, that is, independent of the unknown parameters2

(using, perhaps, some presumptions on the distribution of the population) and to designate the

rejection regions in such manner that there is only a small chance that the empirical value of the test

statistic for a sample will fall into the region. For example, for a one-sided test, we might prescribe

the rejection region as [cα,∞) (i.e. Xr =
{
x : T (x) ≥ cα

}
), where cα is a constant depending on

the parameter α (called significance level) which is simply the probability that a sample falls into

the rejection region given H0
3. One can immediately see that this is the probability of erroneously

rejecting (i.e. rejecting despite that fact that it stands) H0 (also called Type I Error).

Returning to our example, we will demonstrate that

T (X) :=
1
n

∑n
i=1Xi − µ0

σ0/
√
n

(1.7)

is a proper test statistic for the hypothesis of (1.6) with iid. sampling under two assumptions:

1. The background distribution of the population is normal.

2Such statistic is also called a pivot.
3Precise definition would also take the fact into account that this probability might depend on the true (popu-

lation) value of the parameter, and that it might not be possible in some case to construct such interval (that is,
to find appropriate cα for every α), but we only want give a broad overview of statistical hypothesis testing here,
without going into technicalities.

4

2. The variance of this background distribution is a σ2
0 constant that is a priori known.

The proof is simple: under these assumptions and H0 Xi ∼ N
(
µ0, σ

2
0

)
, hence

∑n
i=1Xi ∼

N
(
nµ0, nσ

2
0

)
by the closedness of normal distribution under convolution, hence 1

n

∑n
i=1Xi ∼

N
(
µ0, σ

2
0/n

)
and 1

n

∑n
i=1Xi − µ0 ∼ N

(
0, σ2

0/n
)

and
1
n

∑n
i=1 Xi−175

σ0/
√
n

∼ N (0, 1) using elementary

properties of expected value and variance [10], so if H0 holds than T (X) ∼ N (0, 1) – it in fact

does not depend on the unknown parameter. (Its distribution, not its actual, realized value, of

course.)

One can then define c
(l)
α := Φ−1

(
α/2

)
and c

(u)
α := Φ−1

(
1− α/2

)
lower and upper critical

values and accept H0 if c
(l)
α < T (X) < c

(u)
α (as this is a two-sided test: both high positive, and

high negative values contradict the null hypothesis).

This is the so-called z-test (sometimes also referred to as the u-test).

1.3 Properties of statistical tests

The distribution of a test statistic is only known if H0 stands and the presumptions of the test

are met. This is often overlooked, and many student automatically presumes that H0 can be

rejected (with a given probability) if the test statistic falls into the rejection region, although

strictly speaking this is only true if the presumptions are met, otherwise the distribution of the

test statistic is not guaranteed to be the null distribution, even if H0 stands. In other words,

falling into the rejection region means that either H0 is not true (with a given probability) or the

presumptions are not met.

The two most important properties of statistical tests in which we will be interested pertain

to these two events. Power (1.3.1) describes the behavior of the test if H0 is not met, robustness

(1.3.2) deals with the behavior of the test if the presumptions are not met.

1.3.1 Power of a statistical test

In this part, we will assume that the presumptions of the tests are met. Thus, if H0 stands, the

null distribution conveys every information on the behavior of the test statistic. However, the

question immediately arises: what happens if H0 is not true? This case is more complicated: the

distribution of the test statistic will depend on how H0 is not true. (In our example: if we assume

that presumptions are still met, it means what is the true value of µ.)

Obviously, in this case we want to reject H0. The error we can commit here is the erroneous

acceptance of H0, this is called Type II Error, whose probability is usually denoted with β. β is the

probability that the test statistic falls into the acceptance region, given H1. In contrast to Type I

Error (with probability α) we do not have direct control on β: as outlined above, it also depends

on a factor that is out of our control, namely, the true value of the investigated parameter.

Clearly α and β are not independent: if we decrease α that means we extend the acceptance

region, which, in turn, automatically increases β. Hence, choosing α is a matter of trade-off

between the two types of errors, and depends on how we weigh the severity of committing Type I

Error relative to Type II Error.

Very often, one uses not β itself, but 1 − β, which is called the power of the statistical test.

This is a natural measure of how well that test can detect a deviation from H0 (as it measures the

probability of rejecting H0, given that it in fact does not hold).

In cases when the presumptions of the analyzed test – which are assumed to hold if we inves-

tigate power – do not include distributional presumption (i.e. what is the distribution family of

the population from which the test’s samples are coming), it is up to us to presume a distribution.

5

(These tests are usually called non-parametric tests, in contrast to parametric tests, where we

presume a distribution family. There might be, of course, unknown parameters, but the family is

presumed, i.e. we presume a function form for the distribution pdf/cdf, but perhaps with unknown

parameters. For non-parametric tests, no function form is presumed at all.) In this situation,

sometimes one wants to use a distribution that has known skewness and kurtosis. Although in

different context, but the same question arises in Subsection 1.3.2, and will be addressed there.

1.3.2 Robustness of a statistical test

As already noted, we can only expect that a statistical test’s distribution will be in fact the null

distribution under H0 if its assumptions are met, hence, one should always employ a test for a

given problem, if its assumption are known to be met4 (either from another test performed on

another sample, or a priori).

In many practical situation, however, we can only have an approximate idea on whether the as-

sumptions are met or not. One might – conservatively – chose to use a test with fewer assumptions,

but this comes at the price of lower power, as we have already pointed it out. Hence, practical

researchers often tend to still use test with more assumptions, hoping that it will not profoundly

effect the null distribution (i.e. the Type I Error rate will be still close to the specified significance

level). We will call this property the robustness of a statistical test. In our example, the question of

what happens if the actual variance of the population is not σ0 is a typical example of robustness.

A word of warning about the expression ”robustness”. We will use this term in the above sense,

however, it should be noted that it is sometimes understood as the behavior of the test statistic if

a small proportion of the sample elements takes vastly different value (,,gross error”) [27]. As they

are theoretically different concepts, there should be no confusion.

One of the most important topics within the question of robustness is the robustness with

respect to non-normality. Many statistical tests, including the practically most important ones,

such as Student’s t-test assumes the normality of the population from which its sample(s) are

coming. (Tests like this, that is, those that presume some distribution (perhaps up to one or more

unknown parameters; i.e. which presume a distribution family), which is typically the normal

family, are called parametric test.)

For sufficiently large samples, this can be neglected for tests that are based on the sum of the

samples (such as t-test itself) due to the central limit theorem [10]. However, in certain areas of

applied statistics, for example in biostatistics, one often finds both small samples and population

distributions that are not certainly known to be normal. (This is so prevalent in medical context

that one of the biostatistics textbooks has the subtitle ”Statistics for Small Samples and Unusual

Distributions” [47].) For this reason, the investigation of the robustness of statistical tests is

especially important in biostatistics.

There is a problem that further complicates robustness investigations. For power testing, the

alternative situation is usually well characterized: the true population distribution is still normal

with known variance (as the presumptions are still assumed to stand) but with expected value

of µ (in general, instead of 175). That is: the true population is exactly defined (perhaps with

some parameter). However, in robustness testing, there is no specification for the true population

distribution: when testing robustness with respect to normality, for example, the only prescription

we have is that the population should not follow normal distribution.

This raises two important questions. First: how should we measure non-normality? There are

4But, it is also disadvantageous to employ tests that do not have assumption on what we know, as they tend to
have less power.

6

ææ
àà

ìì

0 1 2 3 4
Γ3

10

20

30

40

50
Γ4

Figure 1.1: Coverage of important distributions on the skewness (γ3)-kurtosis (γ4) space: normal
(green square), uniform (purple circle), exponential (blue diamond), lognormal (cyan line), Pareto
(brown line). Shaded red area indicates the impossible region (where no distribution exists). See
Section A.1.

many ways to define a metric for this (difference of certain moments from the same moment of

normal, entropy, distance of the pdfs, different probability-distance measures etc., see [51]), none of

which is trivially derivable from the other ones, and there is no basis for calling one of the ”best”.

The second question: even if we agree on the metric of non-normality, there are typically infinite

number of distributions for a given level of the metric. Which one should we choose for testing?

(As for performing the robustness analysis, we – of course – need an exactly specified alternative.)

In this thesis, we will confine ourselves to using the absolute moments metric for the third and

fourth moments, i.e. non-normality will be measured with the difference between the investigated

distribution’s skewness and kurtosis and the normal distribution’s skewness and kurtosis. (The

first and second moment is not interesting from this aspect, as every distribution with existing

first and second moment can be transformed to have arbitrary first and second moment with

trivial transformation (linear scaling).) The rationale for this will become more clear in 5.2.

After this agreement, we can turn to the second problem: there are infinite number of distri-

butions for a given skewness-kurtosis level. Should we use this approach for robustness testing, we

have to show a way to construct a distribution for a given skewness-kurtosis pair. This question

is not trivial, as the distributions that are widely used in practice either have skewness-kurtosis

that can not be effected through parameters (normal, uniform, exponential), or can be effected,

but not independently (lognormal, Pareto), i.e. prescribing a skewness determines the kurtosis

itself and vice versa [28]. This is illustrated on Figure 1.1 (see Section A.1), which shows the

so-called coverage of several important distributions on the skewness-kurtosis space, that is, the

skewness-kurtosis combinations the given distribution can take (by variation of the parameters).

Distributions which fall to the first category occupy a single point, distributions from the latter

list occupy a one-dimensional curve. Note that they are all of zero measure.

This Figure also illustrates another important concept: there is a region on the skewness-

7

kurtosis space where no distribution can exist. This is due to theoretical grounds, as shown by the

following theorem.

Theorem 1.3.1. A distribution with every moment {µi} existing satisfies the inequality:∣∣∣∣∣∣∣∣∣∣∣

1 µ1 µ2 . . . µs

µ1 µ2 µ3 . . . µs+1

...
...

...
. . .

...

µs µs+1 µs+2 . . . µ2s

∣∣∣∣∣∣∣∣∣∣∣
≥ 0, (1.8)

for every s ≥ 1.

Proof. See [8] and [57].

Applying this for s = 2 (for a standardized distribution, which we might use wlog), we get that

every distribution with existing first four moment has to satisfy the inequality∣∣∣∣∣∣∣∣
1 0 1

0 1 γ3

1 γ3 γ4

∣∣∣∣∣∣∣∣ = γ4 − γ2
3 ≥ 0⇒ γ4 ≥ γ2

3 + 1. (1.9)

In other words no distribution exists, which has a kurtosis less then 1 plus its squared skewness.

This is the ”impossible region” shown in red on Figure 1.1.

Returning to our problem: we have to find a distribution which can be parametrized so that it

can take arbitrary skewness and kurtosis. Such distribution can then be used for robustness testing

(accepting the absolute moments metric as a measure for non-normality). It is also desirable that

this distribution is algebraically simple, and covers the whole possible region.

One solution to this problem is the application of Fleishman distribution. This is introduced

in Chapter 2.

1.4 Analytical and empirical investigation of statistical tests

The traditional way to investigate the above properties is to use an analytical approach: describe

the alternative situation in exact algebraic terms (exactly specify distributions) and derive the

behaviour of the statistical test.

For example, take our previous example of the z-test. Calculation of its power (with all pre-

sumptions still met) requires the analysis of the behavior of the random variable

1
n

∑n
i=1Xi − µ0

σ0/
√
n

∼ N (µ− µ0, 1) , (1.10)

where µ is the expected value of Xi (which is not µ0 in the current setting).

Although this is clearly not following standard normal distribution if H0 is not met, but its

distribution is still known exactly for any µ, so it poses no problem to calculate the probability

that it falls outside
[
c
(l)
α , c

(u)
α

]
. (Remember that power is the probability of rejection if H0 in fact

does not stand.) This function of power vs. µ (called power function) is shown on Figure 1.2 (see

Section A.2).

However, there is another way to obtain this result: the power is a probability, which can be

considered as the expected value of an indicator variable. (Indicating whether the test statistic

falls into the rejection region under the H1 that the true population expected value is µ 6= µ0.) As

8

172 174 176 178 180
Μ

0.2

0.4

0.6

0.8

1.0

Power H1-ΒL

Figure 1.2: Power function of the z-test (with all presumptions met). See Section A.2.

172 174 176 178 180
Μ

0.2

0.4

0.6

0.8

1.0

Power H1-ΒL
R=100

172 174 176 178 180
Μ

0.2

0.4

0.6

0.8

1.0

Power H1-ΒL
R=500

172 174 176 178 180
Μ

0.2

0.4

0.6

0.8

1.0

Power H1-ΒL
R=1000

Figure 1.3: Power function of the z-test (with all presumptions met) approximated with Monte
Carlo simulation with different number of replications. See Section A.2.

we know from the Law of Large Numbers [10], if we take iid samples from this indicator variable,

their sum divided by the number of samples (which will be nothing else then the relative frequency

of the event indicated by the variable) will converge to this probability, both stochastically and

almost surely.

This points to the following procedure: generate iid random variables from the distribution

specified in H1 (in this case, N
(
µ 6= µ0, σ

2
0

)
) up to a specified sample size, perform the z-test on

the sample, record its result, and repeat this procedure R times, where R is a sufficiently large

number so that the fluctuations are acceptably small (due to the convergence discussed above).

The relative frequency of rejections will approximate the power for the given µ. This procedure is

called Monte Carlo simulation and can be considered as a way to empirically assess a statistical

test.

Results of the Monte Carlo simulation for the power of the z-test (for different Rs) are shown

on Figure 1.3 (see Section A.2).

At first glance, this does not seem to be an especially relevant addition, as the analytical

method yielded an exact answer, faster, without any major theoretical complication. However,

note that this simply depended on the fact that normal distribution is closed under convolution,

so the sum of the samples was still normal (with easily computable parameters), even if H0 was

violated. There might be situations when this is not so.

Consider our second important property: robustness. Say, we want to test robustness with

respect to the normality assumption (that is: we assume that every other presumption holds, the

population’s variance is still known, its expected value is still µ0, but it is not normal). We can, for

example, specify that the population follows Γ-distribution: Xi ∼ Γ (a, b). It is immediately not

trivial, but one can conclude after some calculation and using induction that
∑n
i=1Xi ∼ Γ (na, b).

9

1

2

3

a

1

2

3

b

0.044

0.046

0.048

0.050

0.052

Actual Α

Figure 1.4: Robustness of the z-test with respect to non-normality: Γ-background distribution
with parameters a and b. Vertical axis shows actual α. See Section A.3.

The distribution of the test statistic will be even more complicated:

T (X) =
1
n

∑n
i=1Xi − µ0

σ0/
√
n

∼

∼ Γ

(
an,

Γ(a)
√
n
√

Γ(a)Γ(a+ 2)− Γ(a+ 1)2
, 1,−

√
nΓ(a+ 1)√

Γ(a)Γ(a+ 2)− Γ(a+ 1)2

)
,

(1.11)

where Γ (a, b, γ, µ) represents the generalized Γ-distribution [28].

But we are still not finished: we have to integrate the pdf of this distribution outside
[
c
(l)
α , c

(u)
α

]
,

which practically requires a computer algebra system.

After these difficulties, we obtain the behavior of the test under this H1, i.e. its robustness.

Figure 1.4 shows the actual α as a function of the background distribution’s parameters a and b;

Figure 1.5 shows this for b = 2 (See Section A.3.).

It can be clearly seen how cumbersome this procedure was. Let us now see how to solve the

same problem with Monte Carlo simulation!

There is no need to calculate any distribution at all, not even the distribution of the sum of

samples, and there is no need to calculate any integral. One just has to generate many samples

from the specified Γ-distribution, perform the test on them, and count the number of replications

where H0 was rejected. That’s it! Figure 1.6 shows the results for b = 2. (Note that we needed

a much higher number of replications (R = 100000) compared to the previous example, as the

function was more complicated, hence, more replication is needed to reduce the fluctuations.)

This example can be made even more dramatic by prescribing a background distribution of

lognormal. This change does not effect Monte Carlo simulation at all : one just has to change the

random number generator used, everything else remains unchanged. However, analytical tracking

becomes not only much more complicated, but downright impossible: there is provably no closed-

form of the pdf of the sum of lognormal densities [4].

10

0.5 1.0 1.5 2.0 2.5 3.0
a

0.044

0.046

0.048

0.050

0.052
Actual Α

Figure 1.5: Robustness of the z-test with respect to non-normality: Γ-background distribution
with parameters a and b = 2. Vertical axis shows actual α. See Section A.3.

0.5 1.0 1.5 2.0 2.5 3.0
a

0.044

0.046

0.048

0.050

0.052

Actual Α

Figure 1.6: Robustness of the z-test with respect to non-normality approximated with Monte Carlo
simulation (R = 100000): Γ-background distribution with parameters a and b = 2. Vertical axis
shows actual α. See Section A.3.

11

This concept can be simply ”visualized” as in Figure 1.7.

Problem size

Complexity of solution

Analytical

Empirical

Figure 1.7: Schematic representation of
the complexity of the analytical and the
empirical approach as the problem size
increases.

It worth noting that Monte Carlo simulation only re-

quires that we are able to generate random numbers from

a distribution, but no other information is needed about

that distribution. For instance, we are able to use Monte

Carlo simulation even if we have no information on the

explicit pdf or cdf of the distribution (as far as we are

able to generate random numbers from the distribution).

This will have significance pertaining to Fleishman dis-

tribution, see Chapter 2.

The major drawback of the Monte Carlo simulation

approach is that it can not provide analytical result, for

example, a distribution is only reconstructible through realizations (although unlimited in num-

ber, which theoretically makes arbitrary precise reconstruction possible, but still, no analytical

expression will be provided for its pdf or cdf).

To sum up, Monte Carlo simulation aims explore the behavior of a system (a statistical test in

our case) in a stochastical way: through the outputs it provides as an answer to randomly given

inputs [56]. This way, the complexity of the exploration does not depend on the complexity of the

system, but – in exchange – only approximative, non-analytical description can be given about the

system.

Monte Carlo simulation was first used in the 1940s for solving physical problems [40, 9], but

traces its roots back to Buffon’s famous needle dropping experiments. Physics is still amongst the

major users of Monte Carlo simulation even today, but computational biology, computer graphics,

and especially computational finance joined and make use of Monte Carlo simulation and Monte

Carlo methods [32].

1.5 Overview of the literature

Every statistical test we will cover in this thesis has already been investigated earlier for properties,

including robustness and power. As a matter of fact, there is so much literature on this question,

that we can only aim to present the most important results for

The one-sample and the two-sample t-test are amongthe most widely investigated statistical

tests, which includes robustness investigations (dating back to the late 1920s). Analytical handling

was either done exactly for extremely small samples [54, 46, 33] or approximately through series

expansions with Edgeworth- or Gram-Charlier series [3, 17, 18, 16], with Cornish-Fisher expansion

[29] or with Laguerre expansion [62]. Other methods were also proposed [59].

The robustness of the ANOVA is a strongly connected question, which has also been investigated

in detail, both analytically and – especially – empirically [19, 22, 36].

1.6 Organization of this thesis

The rest of this thesis is organized as follows.

As already noted, Chapter 2 introduces and discusses Fleishman distribution in detail, while

Chapter 3 discusses the computational aspects of Monte Carlo simulations aimed at the empirical

investigation of statistical tests.

12

Chapter 4 shows the results (both for power and robustness) achieved with Monte Carlo simula-

tion employing Fleishman distribution for popular statistical tests. Chapter 5 outlines a criticism,

and a possible limitation of the prior investigation. This limitation is explored in detail in Chap-

ter 5. Finally, Chapter 6 concludes this paper with some closing remarks.

The Appendix lists every source code that was used to perform the calculations discussed in

this thesis. Chapter A lists the Wolfram Mathematica codes, Chapter B contains the ”heart” of the

program environment introduced in this thesis, the CUDA-codes of the Monte Carlo simulational

program. Finally Chapter C shows the R-codes used for visualization.

13

Chapter 2

Fleishman distribution

In this Chapter, we introduce a distribution family aimed specifically at accommodating arbitrary,

pre-specified moments through its parameters.

We will introduce this distribution, called Fleishman distribution in Section 2.1 and its gener-

alized version in Section 2.2. Fleishman distributions are very simple technically, but still provide

good coverage, as discussed in Section 2.3. Its advantages and disadvantages are discussed in detail

in Section 2.4. Finally, in Section 2.5, we overview the open questions about Fleishman distribution

and its possible extensions.

2.1 Origin and rationale of Fleishman distribution

Consider a standard normal variate Z ∼ N (0, 1). This random variable has no moment that can

be set by parameters (obviously, as it has no parameters at all). Now consider the variable a+Z,

where a ∈ R constant. This variable has a single moment (namely: the first) that can be set

through parameters, a in this case. (As a+Z ∼ N (a, 1).) Now let us turn to the variable a+ bZ,

a, b ∈ R constants. This has two moments (namely: first and second) that can be adjusted through

parameters a and b (as a+ bZ ∼ N
(
a, b2

)
).

What we have done in the first case can be considered to be a polynomial transformation of

order zero (resulting in one adjustable moment), the second case is a polynomial transformation

of order one (resulting in two adjustable moments). One might wonder if a polynomial power

transformation of order two (i.e. a+ bZ + cZ2) results in a distribution with adjustable first three

moments through parameters a, b and c. Or – and this is the more important question practically

– does the distribution

a+ bZ + cZ2 + dZ3, where Z ∼ N (0, 1) (2.1)

has adjustable first four moments? In line with Subsection 1.3.2, this is the critical question for

us, because a positive answer would provide a distribution with arbitrary skewness and kurtosis

that can be set through parameters.

It was Allan I. Fleishman who first proposed this back in 1978 [12]. Answering the question

(i.e. whether the distribution indirectly defined by this transformation can have arbitrary first four

moments) involves tedious linear algebra, but is straightforward.

First note that any distribution that has expected value and variance (always true for empirical

distributions) can be transformed to have zero expected value and unit variance (by simple linear

scaling) so we can confine ourselves to this case wlog. The expected value of the distribution

14

defined by 2.1 is simply

E
(
a+ bZ + cZ2 + dZ3

)
= a+ bEZ + cEZ2 + dEZ3 = a+ c, (2.2)

by the linearity of expected value and application of the following well-known lemma:

Lemma 2.1.1 (Moments of the standard normal distribution). If Z ∼ N (0, 1) is a standard

normal variate, its moments are

µp = EZp =

0 if p is odd,

(p− 1)!! if p is even
(2.3)

where n!! is the double factorial (i.e. (p− 1)!! = 1 · 3 · 5 · . . . · (p− 3) · (p− 1)).

Proof. Standard normal distribution is symmetric, the power function with odd exponent is of

course odd, thus, the exponentiated distribution will also be symmetric (and therefore having an

expected value of zero), if the exponent is odd.

If the exponent is even, we can use Leibniz’s rule (differentiation under the integral sign)

by noting that ∂ne−α·x
2

∂αn = (−1)
n
x2ne−αx

2

(both e−α·x
2

and its derivative with respect to α is

continuous), hence (set p = 2k, as p is even) x2ke−x
2/2 = (−1)

k · ∂
ke−α·x

2

∂αk
for α = 1/2. Then:

µ2k =
1√
2π

∫ ∞
−∞

x2ke−x
2/2 dx =

1√
2π

∫ ∞
−∞

(−1)
k · ∂

ke−α·x
2

∂αk
dx

∣∣∣∣∣
α=1/2

=

=
1√
2π
· (−1)

k · dk
∫∞
−∞ e−α·x

2
dx

dαk
=

1√
2π
· (−1)

k ·
dk 1√

α

√
π

dαk

∣∣∣∣∣
α=1/2

=

=
1√
2π
· (−1)

k ·
√
π · (−1)

k · (2k − 1)!!

2k
· α−(k+1/2)

∣∣∣∣
α=1/2

=

= (2k − 1)!!,

(2.4)

where we used the well-known Gaussian integral [1].

Therefore, the condition for the first moment of the Fleishman distribution will be the following:

a+ c = 0, (2.5)

given the already mentioned fact that we will set the first two moments zero and unit (wlog). In

other words, we in effect have only three parameters, as c = −a trivially.

Let us now move on to the second moment. Analytically, the second moment of the Fleishman

distribution is

E
[(
a+ bZ + cZ2 + dZ3

)2
]

= a2 + 2abEZ + 2acEZ2 + 2adEZ3 + b2EZ2 + 2bcEZ3 + 2bdEZ4+

+ c2EZ4 + 2cdEZ5 + d2EZ6 = a2 + 2ac+ b2 + 6bd+ 3c4 + 15d2,

(2.6)

using again Lemma 2.1.1 and the linearity of the expected value.

Therefore the second condition on the parameters of Fleishman distribution is

a2 + 2ac+ b2 + 6bd+ 3c4 + 15d2 = 1. (2.7)

15

Third and fourth moments (i.e. skewness and kurtosis itself, as we are working with standardized

distributions) can be calculated in a similar way. Calculations are straightforward, but become

rather cumbersome due to the long polynomial multiplications:

E
[(
a+ bZ + cZ2 + dZ3

)3
]

= a3 + 3a2bEZ + 3a2cEZ2 + 3a2dEZ3 + 3ab2EZ2 + 6abcEZ3+

+ 6abdEZ4 + 3ac2EZ4 + 6acdEZ5 + 3ad2EZ6 + b3EZ3 + 3b2cEZ4+

+ 3b2dEZ5 + 3bc2EZ5 + 6bcdEZ6 + 3bd2EZ7 + c3EZ6+

+ 3c2dEZ7 + 3cd2EZ8 + d3EZ9 =

= a3 + 3a2c+ 3ab2 + 18abd+ 9ac2 + 45ad2 + 9b2c+ 90bcd+ 15c3+

+ 315cd2

(2.8)

and

E
[(
a+ bZ + cZ2 + dZ3

)4
]

= a4 + 4a3bEZ + 4a3cEZ2 + 4a3dEZ3 + 6a2b2EZ2 + 12a2bcEZ3+

+ 12a2bdEZ4 + 6a2c2EZ4 + 12a2cdEZ5 + 6a2d2EZ6 + 4ab3EZ3+

+ 12ab2cEZ4 + 12ab2dEZ5 + 12abc2EZ5 + 24abcdEZ6+

+ 12abd2EZ7 + 4ac3EZ6 + 12ac2dEZ7 + 12acd2EZ8 + 4ad3EZ9+

+ b4EZ4 + 4b3cEZ5 + 4b3dEZ6 + 6b2c2EZ6 + 12b2cdEZ7+

+ 6b2d2EZ8 + 4bc3EZ7 + 12bc2dEZ8 + 12bcd2EZ9 + 4bd3EZ10+

+ c4EZ8 + 4c3dEZ9 + 6c2d2EZ10 + 4cd3EZ11 + d4EZ12 =

= a4 + 4a3c+ 6a2b2 + 36a2bd+ 18a2c2 + 90a2d2 + 36ab2c+

+ 360abcd+ 60ac3 + 1260acd2 + 3b4 + 60b3d+ 90b2c2 + 630b2d2+

+ 1260bc2d+ 3780bd3 + 105c4 + 5670c2d2 + 10395d4,

(2.9)

using again Lemma 2.1.1 and the linearity of the expected value.

Therefore the third condition is

a3 + 3a2c+ 3ab2 + 18abd+ 9ac2 + 45ad2 + 9b2c+ 90bcd+ 15c3 + 315cd2 = γ3, (2.10)

and the fourth condition is

a4 +4a3c+6a2b2 +36a2bd+18a2c2 +90a2d2 +36ab2c+360abcd+60ac3 +1260acd2 +3b4 +60b3d+

90b2c2 + 630b2d2 + 1260bc2d+ 3780bd3 + 105c4 + 5670c2d2 + 10395d4 = γ4, (2.11)

where γ3 and γ4 are the third and fourth standardized central moments, respectively (i.e. skewness

and kurtosis; the same as third and fourth moment in this case).

Combining the above, we obtain the following theorem:

Theorem 2.1.2 (Fitting Fleishman distribution with four moments). Let X denote a Fleishman

distribution for the first four moments (i.e. X = a + bZ + cZ2 + dZ3, where Z ∼ N (0, 1)). Such

distribution exists for standardized first four moments (0, 1, γ3, γ4) if and only if the following

16

system of equations has a solution for a, b, c and d:

0 = a+ c (2.12)

1 = a2 + 2ac+ b2 + 6bd+ 3c4 + 15d2 (2.13)

γ3 = a3 + 3a2c+ 3ab2 + 18abd+ 9ac2 + 45ad2 + 9b2c+ 90bcd+ 15c3 + 315cd2 (2.14)

γ4 = a4 + 4a3c+ 6a2b2 + 36a2bd+ 18a2c2 + 90a2d2 + 36ab2c+ 360abcd+ 60ac3 + 1260acd2+

(2.15)

+ 3b4 + 60b3d+ 90b2c2 + 630b2d2 + 1260bc2d+ 3780bd3 + 105c4 + 5670c2d2 + 10395d4

Proof. See above.

2.2 Generalizing the Fleishman distribution

While having slight practical significance, it worth noting that the above logic can be extended to

moments beyond the first four one. For that end, first note that we need a transforming polynomial

of order n− 1 (with n parameters) to have chance to fit the distribution to n moments (i.e. solve

n equations). That is, the form of the (generalized) Fleishman-distribution for first n moments is

X = a0 + a1Z + a2Z
2 + . . .+ an−1Z

n−1 =

n−1∑
i=0

aiZ
i =: pa0,a1,...,an−1

(Z) where Z ∼ N (0, 1).

(2.16)

We will denote this distribution with FD (n). (That is: the ”traditional” Fleishman distribution

is FD (4).)

Following the logic of Section 2.1, we first determine the p-th moment of the (generalized)

Fleishman distribution FD (n). We will need the multinomial theorem:

Lemma 2.2.1 (Moments of the (generalized) Fleishman distribution). Let X ∼ FD (n) (i.e. X =∑n−1
i=0 aiZ

i where Z ∼ N (0, 1)), then its p-th moment is

µp = EXp =
∑

k0+k1+...+kn−1=p∑n−1
i=0 i·ki mod 2=0

p!

k0!k1! · · · kn−1!
·

n−1∏
i=0

akii

 ·
n−1∑
i=0

i · ki − 1

!!. (2.17)

Proof. Use the multinomial theorem:

µp = EXp = E

n−1∑
i=0

aiZ
i

p
 = E

 ∑
k0+k1+...+kn−1=p

p!

k0!k1! · · · kn−1!

n−1∏
i=0

(
aiZ

i
)ki =

=
∑

k0+k1+...+kn−1=p

p!

k0!k1! · · · kn−1!
·

n−1∏
i=0

akii

 · E
n−1∏
i=0

(
Zi
)ki =

=
∑

k0+k1+...+kn−1=p

p!

k0!k1! · · · kn−1!
·

n−1∏
i=0

akii

 · E(Z∑n−1
i=0 i·ki

)
=

=
∑

k0+k1+...+kn−1=p∑n−1
i=0 i·ki mod 2=0

p!

k0!k1! · · · kn−1!
·

n−1∏
i=0

akii

 ·
n−1∑
i=0

i · ki − 1

!!.

(2.18)

17

0.5 1.0 1.5 2.0 2.5 3.0
Γ3

5

10

15

20

Γ4

Figure 2.1: Region of existence of FD (4) Fleishman distribution (light blue shading). Border for
the theoretically possible region is drawn in red; dark blue line is the quadratic approximation of
Equation (2.20) for the lower bound of the region of coverage.

We can now conclude the same way as in the special case:

Theorem 2.2.2 (Fitting Fleishman distribution with n moments). Let X denote a Fleishman

distribution for the first n moments (i.e. X ∼ FD (n)). Such distribution exists for standardized

first n moments
(
γj
)n
j=1

if and only if the following system of equations has a solution for
(
aj
)n−1

j=0
:

γp =
∑

k0+k1+...+kn−1=p∑n−1
i=0 i·ki mod 2=0

p!

k0!k1! · · · kn−1!
·

n−1∏
j=0

akii

 ·
n−1∑
i=0

i · ki − 1

!!

n

p=1

(2.19)

Proof. See above.

2.3 Solving the FD (4)

Now we will return to the special (and practically important) case of using the first four moments

to see for which moments is it possible to construct a Fleishman distribution.

Theorem 2.1.2 gave a necessary and sufficient condition for this. It, however, builds on the solv-

ability of a non-linear system of equations, which has no general, closed-form solution. Therefore,

we have to use numerical methods, such as Newton–Raphson method [31] or similar root-finding

or optimizational method [30] to solve the equation for a given set of moments.

Thus, it is not possible to give an analytical condition for the existence of Fleishman distribu-

tion. Instead of that, we can iterate through the skewness-kurtosis space, and try to numerically

solve the necessary system of equations at every point. Those points where solution exists compose

the region where Fleishman distribution exists. Appendix A.4 shows an example code in Wolfram

Mathematica to numerically determine this region, Figure 2.1. shows the results graphically.

One can immediately see that Fleishman distribution covers most of the theoretically possible

region. The exception is a small ”gap” where kurtosis is very close to the minimal possible given

the skewness.

18

The lower limit of the coverage area of Fleishman distribution seems to be quadratic. In fact,

it can be shown by numerical methods (see Appendix A.4) that the coverage region can be almost

perfectly approximated as:

γ4 > 1.738γ2
3 − 0.3544γ3 + 1.978. (2.20)

This curve is also indicated on Figure A.4; one can observe the very close fit with the actual

lower bound of the region of coverage. (Note that this is not in agreement with Fleishman’s original

publication [12]. Numerical error in that article has been already recognized.)

2.4 Advantages and disadvantages of using FD (4)

Based on the above findings, it is now possible to summarize what advantages (2.4.1) and disad-

vantages (2.4.2) does the Fleishman distribution have for the task outlined in Subsection 1.3.2.

2.4.1 Advantages of using FD (4)

The following list is a summary of the advantages of using FD (4) distribution.

• The primary advantage of FD (4) shows up if we only want to generate random numbers

from this distribution. (Just as in our case with Monte Carlo simulation, see Section 1.4.)

This is very easy, one only needs to calculate the coefficients, generate large number of

standard normal deviates, and perform the prescribed transformation. All three steps is

computationally simple, because:

– The only random number generator needed by the simulation is one that can produce

standard normal variate. This is a basic, and thus very deeply investigated problem in

random number generation, so highly efficient solutions (such as the Box-Müller method,

and other approaches [8]) are available.

– If the coefficients and the random variate is given, only very simple algebraic transfor-

mations are needed to obtain the transformed variate. Even explicit exponentiation can

be spared, consider the rewriting:

a+ bZ + cZ2 + dZ3 = a+ Z
(
b+ Z (c+ Zd)

)
(2.21)

– Finally, the coefficients a0, a1, a2 and a3 can be calculated off-line, i.e. they are the

same for a given skewness-kurtosis, so they have to be calculated only once for a given

skewness-kurtosis pair (this can be done prior to beginning the simulation), regardless

of how many variables we generate.

• The covarage is excellent, as demonstrated in Section 2.3.

2.4.2 Disadvantages of using FD (4)

The following list is a summary of the disadvantages of using FD (4) distribution.

• The coverage is, although excellent, not perfect.

• The indirect definition of Fleishman distribution makes random number generation very

simple, but obtaining an explicit pdf for FD (4) very complicated in exchange. In fact, this

was one of the earliest criticism against Fleishman distribution [61]. Indeed, no formula was

19

0.5 1.0 1.5 2.0 2.5 3.0
Γ3

5

10

15

20

Γ4

Figure 2.2: Region of existence of FD (4) Fleishman distribution restricted to transforming poly-
nomials that are strictly monotonically increasing (light blue shading). Border for the theoretically
possible region is drawn in red; dark blue line is the quadratic approximation of Equation (2.20)
for the lower bound of the region of coverage for the entire FD (4) family.

given for the pdf of FD (4) until 2007 (almost three decades after the publication of the

distribution). See the more detailed discussion in Subsection 2.5.1.

2.5 Further possibilities with the Fleishman distribution

In this section we investigate several aspects of Fleishman distributions that represent improvement

in some respect compared to the ”basic” variant introduced above. In particular, we will deal with

the question of explicit cdf/pdf of Fleishman distribution (2.5.1), the usage of FD (n) for n > 4

(2.5.2), the usage of initial distributions other than standard normal (2.5.3), and the question of

multivariate distributions (2.5.4).

State-of-the-art in these question is well summarized in [25].

2.5.1 Probability density function of Fleishman distribution

The first problem is the lack of explicit pdf: the definition a + bZ + cZ2 + dZ3 does not provide

any information on the pdf of the resulting distribution. There are several ways to attack this

problem.

Traditional approach

The use of traditional methods for random variable transformation leads to extremely complicated

formulae. To alleviate this issue, it is worth confining ourselves to coefficients where the trans-

forming polynomial is strictly monotonically increasing. (Figure 2.2 shows the coverage of these

distributions together with the lower bound for the original FD (4) of Equation (2.20). It can be

seen that there is only a minimal loss of generality by this restriction.)

The condition for this is simple: we need p′a,b,c,d (x) = b + 2cx + 3dx2 > 0 for all x. By using

the quadratic formula, we obtain two conditions for this: d > 0 and 4c2 − 12bd < 0. The former is

not restrictive, as the signs of b and d can be simultaniously changed without affecting the validity

20

of Equations (2.12)-(2.15). (Observe that the sum of the exponents of b and d is even for every

term.) The latter is restrictive, but its effect is minimal, as we have already discussed it.

Although this restriction is useful because such polynomials have exactly one real root (making

the transformation easier, as we will see) the result is still too complicated for any practical

application:

Proposition 2.5.1 (Explicit pdf of FD (4) with strictly monotonically increasing polynomial).

The probability density function of an FD (4) defined by a strictly monotonically increasing poly-

nomial is

f (x) =

3d
(

6bd− 2c2 + 3
√

2∆ (y)
2/3
)

exp

−
 2 3√2(c2−3bd)

3
√

∆(y)
−2c+22/3 3

√
∆(y)

2

72d2

2 6
√

2
√
π 3
√

∆ (y)

√(
27d2(a− y)− 9bcd+ 2c3

)2 − 4 (c2 − 3bd)
3

, (2.22)

where ∆ (y) :=

√(
27d2(a− y)− 9bcd+ 2c3

)2 − 4 (c2 − 3bd)
3

+ 27d2(y − a) + 9bcd− 2c3.

Proof. First, we obtain the cdf of the transformed distribution:

F (x) = P (X ≤ x) = P
(
p (Z) ≤ x

)
= P

(
Z ≤ p−1 (x)

)
. (2.23)

This is the point were we made use of the fact that p (x) is strictly monotonically increasing –

this way, there is a unique inverse in the above equation. (Otherwise, we might have three real

roots, and the above probability would have been the standard normal’s cdf at the first one, and

the difference of its cdf between the second and the third one. Of course, and additional case

separation would be also needed, making the result even more obfuscated.)

After we calculate the inverse (which will be quite complicated itself, as it requires solving a

cubic equation), and obtain the above cdf by substitution (practically: with the application of a

computer algebra system), we can simply derive the pdf (as the distributions are continuous) as:

f (x) =
dF (x)

dx
. (2.24)

Substituting p (x) = a + bx + cx2 + dx3 (with the restrictions d > 0 and 4c2 − 12bd < 0, see

above), we get the formula in the Proposal.

The above reasoning also shows that we can not expect algebraic solution for the general case

of FD (n) when n ≥ 6 (as per the Abel–Ruffini theorem).

Headrick’s approach

Another approach to obtain a pdf is the one of Headrick et al, who claimed to be the first to derive

a pdf for FD (n) in 2007 [26]. What they actually did was, however, not the derivation of the

explicit pdf (logically, as this would not lead to any meaningful result, as shown above), but rather

the conversion to an alternative (and more useful) representation of the pdf.

To understand their transformation, first note that any R → R function can be represented

as a R → R2 parametric curve. For example, a pdf f (x) is a mapping x 7→ f (x), but it can be

also seen as a parametric curve on R2, i.e. a t 7→ R2 in the form
(
x (t) , y (t)

)
(where x (t) = t

and y (t) = f (t)). We can, for example, say, that the pdf of the standard normal distribution is

x (t) = t and y (t) = 1√
2π
e−t

2/2. Of course, the same can be said about the representation of a cdf.

21

At first glance, this transformation is nothing more than some voodoo magic aimed to represent

something very simple in a very complicated form. This is, however, not the case. The primary

significance of this form, which will make many calculations easier, is shown by the following

Lemma. We emphasize that these can also be only applied if p is a strictly monotonically increasing

transformation.

Lemma 2.5.2 (Transformation of a cdf given as parametric curve). Consider the cumulative

distribution function F of a random variable X, represented as parametric curve, i.e. in a form(
x (t) , y (t)

)
=
(
t, F (t)

)
. Then the F ′ cdf of the transformed variable p (X) can be represented as

a parametric curve as
(
p (t) , F (t)

)
if the transformation is strictly monotonically increasing.

Proof. We use the fact that p is strictly monotonically increasing – this means that inequality

a < b holds exactly if p (a) < p (b). Therefore:

F (t) = P (X < t) = P
(
p (X) < p (t)

)
= F ′

(
p (t)

)
. (2.25)

The cdf of the transformed variable can be represented as a parametric curve – in general

form – as F ′ :
(
t, F ′ (t)

)
. This stands for every t, so specifically for p (t) as well, that is, F ′ :(

p (t) , F ′
(
p (t)

))
also holds. Now, using the equality in (2.25), we get that this latter is the same

as F ′ :
(
p (t) , F (t)

)
, which is just the statement in the Lemma.

The significance of this form is that it only requires the original cdf, and the transformation,

but not the transformation’s inverse! So, this approach can be applied even if the inverse is

complicated, or does not even exist in closed form.

To show that this transformation is in fact useful for our problem as well, consider the following

simple question: what is the median of a given FD (4) distribution? Without cdf, this can not be

answered. But the above parametrisation shows a way to solve this (without producing an explicit

cdf): the median is the point where F ′ (t) = 1/2. Considering the Lemma, this is characterized by

F (t) = 1/2. But here, F is the cdf of the standard normal distribution, hence t = 0 so that the

previous equation holds. Therefore the ”x-coordinate” of the median (i.e. the median itself) will

be at p (0) (at a for FD (n)), using again the above Lemma.

The same way, we can determine any quantile of the transformed distribution. (And other,

practically relevant statistics as well, like trimmed mean or even mode.)

Of course, there is no way to obtain a simpler form for the pdf/cdf as shown above; even

this approach is naturally bound to run into the same complicated formula, if we want to get

an explicit form. To see this, consider how we would write an explicit form from the parametric

one: we would express the parameter from the x coordinate, and substitute it to the y coordinate.

However, expressing the parameter from the x coordinate would result in p−1 (t), which would lead

us back right to Lemma 2.5.1.

The Lemma can be formulated for pdf as well:

Lemma 2.5.3 (Transformation of a pdf given as parametric curve). Consider the probability

density function f of a random variable X, represented as parametric curve, i.e. in a form(
x (t) , y (t)

)
=
(
t, f (t)

)
. Then the pdf of the transformed variable p (X) will be

(
p (t) , f(t)

p′(t)

)
if

the transformation is strictly monotonically increasing.

Proof. One advantage of the parametric curve is the we can calculate the derivative coordinate-

wise. Using Lemma 2.5.2 we get that the tangent vector of the cdf is

(
p′ (t) , f (t)

)
. (2.26)

22

This pertains to parameter value t, that is, to the point with x coordinate p (t) (see Lemma 2.5.2).

The derivative at this point can be calculated by normalizing the above tangent, hence we obtain(
p (t) ,

f (t)

p′ (t)

)
, (2.27)

just as we stated.

This Lemma can be used, for example, to plot the pdf of an FD (4) distribution – this again

shows the strength of this approach, as it will be an exact plotting, despite the fact that we do not

know the explicit pdf itself.

These results can also be used to derive an analytical formula for the lower boundary of the

skewness-kurtosis coverage of FD (4) [25].

To sum up, this approach can not provide simpler explicit form for the pdf or cdf of FD (n)

(of course), but can be used to exactly perform the plotting of the function’s graph, or to exactly

answer important questions (such the quantiles of the distribution). Finally, we again stress that

this approach is also limited to distributions that are defined by a strictly monotonically increasing

polynomial transformation (although, as we have seen, it does not present a major restriction).

2.5.2 Using FD (n) for n > 4

It is quite logical idea to improve the fit of a Fleishman distribution for a given data by using more

than four moments. (That is, to enforce the equality of more than just the first four moments.)

As the first four moments are still matched, one can expect at least as good fit for the data (and

perhaps even better because of the utilization of higher moments). Practically, matching based on

the first six moments (FD (6)) is used, see [23] for results on using such distributions.

As for the Monte Carlo studies, this approach can be used to increase the coverage and to

workaround the restriction of strictly monotonically increasing transformational polynomial (should

one investigate the cdf/pdf). The reason is simple: restrictions will apply in the six dimensional

space of the first six moments (when using FD (6)), but when they are projected to the first four

dimension, the covered area will be larger than the one obtained with FD (4) [25].

2.5.3 Using other initial distributions

Yet another idea to improve Fleishman distribution is the usage of initial distributions (i.e. what is

transformed with the polynomial) other then standard normal. One obvious effect of this change

will be that the support of the resulting distribution drastically changes: if the original distribution

is bounded, the resulting Fleishman distribution will also be bounded.

Apart from that, we can also expect that the region of coverage (with respect to skewness-

kurtosis) depends on the initial distribution. This is discussed in [25]; our result are shown on

Figure 2.3. Distributions include standard normal, continuous uniform (concentrated to the interval

[0, 1]) and standard logistic [28].

2.5.4 Multivariate distributions

Finally, one might be interested if Fleishman distributions can be extended multivariately. The

question that obviously arises at this point is the prescribing of a correlation structure between

the components.

The answer is positive, one can define such distributions, but this is outside the scope of the

present thesis, we refer the reader to [63] and [24].

23

0.5 1.0 1.5 2.0 2.5 3.0
Γ3

5

10

15

20

Γ4

0.5 1.0 1.5 2.0 2.5 3.0
Γ3

5

10

15

20

Γ4

0.5 1.0 1.5 2.0 2.5 3.0
Γ3

5

10

15

20

Γ4

Figure 2.3: Coverage of Fleishman distribution with different initial distributions: standard normal
(left), uniform (center), standard logistic (right).

24

Chapter 3

Computational aspects of Monte

Carlo simulation

We developed a computer program, a Monte Carlo simulational environment that can be used

for the empirical investigation of statistical tests. It is basically aimed to perform two kind of

analyses: robustness testing with respect to distributional assumption (for parametric tests) and

power testing for tests that do not have distributional assumption (non-parametric tests). These

problems are practically interesting, because they require the application of a distribution with

pre-specified moments, which can not be trivially solved. (We will now measure the difference of

distributions by the difference of their moments, see Section 1.3. We will be mostly interested

in skewness and kurtosis.) Also, these are the problems that are typically hard or impossible to

handle in practice with analytical methods.

Our environment is highly flexible: it is capable to investigate a variety of tests under a variety

of assumptions (all of which can be easily set by the user), and can be used to solve diverse tasks.

Also, we paid pronounced attention to the modularity of the environment: it can be extended to

include new tests or parameter with ease.

First, in Section 3.1 we give a broad overview on the logic of the simulational environment. It

will become clear from this Section that the program requires trendemous amounts of calculations

which can not be feasibly done on CPU. In Section 3.2, we present an alternative method, the so-

called General Purpose GPU computing, which can be applied to speed up our calculations in an

affordable way. The concrete implementation is described in Section 3.3. Finally, in Section 3.4, we

briefly discuss the visualization of the results (as it was done under a separate program package).

3.1 Overview of the developed Monte Carlo simulational

environment

In this thesis we present a simulational environment to empirically investigate properties (power

and robustness) of statistical tests. As already discussed in Chapter 1, this environment will

use Monte Carlo simulation, hence it is almost completely insensitive to the complexity of the

statistical test under investigation. As introduced in Chapter 2, we will use Fleishman distribution

to generate random numbers from distributions with – almost – arbitrary skewness and kurtosis

as required by investigating robustness with respect to a distributional assumption (for parametric

tests), or power simulation when there is no distributional assumption (non-parametric tests).

25

The basic mechanism of our simulational environment is shown on Figure 3.1. It is applicable

for both purposes (the only difference is in the actual test employed).

The program performs investigation by scanning the skewness-kurtosis space in a grid search

manner: it places an equidistantly spaced, rectangular grid on this space, and performs the analysis

in every grid point. There is, however, one additional consideration here: the coverage of Fleishman

distribution (but also the existence of the impossible region) would make the rectangular grid

inefficient: at many points, there would be no distribution at all. To circumvene this problem, we

simply used a skewness-dependent kurtosis metric, the ”kurtosis above minimum” instead of the

usual kurtosis, where minimum was chosen to be 2γ2
3 +3. (Mostly for convenience: this comfortably

avoids the impossible region, lies within the coverage of the Fleishman distribution (see (2.20)),

and has an additional benefit as well: the minimum ”kurtosis above minimum” for zero skewness

will be exactly the kurtosis of the normal distribution. That is: in our new skewness-”kurtosis

above minimum” space, the normal distribution will be just at the origin!) This is illustrated on

Figure 3.2, which shows the new coordinate system with typical grid points (maximum skewness of

4.0 in 32 steps, maximum ”kurtosis above minimum” of 20.0 in 32 steps). The subsequent analysis

will be performed at these points. (So the skewness-kurtosis space will be explored at 32·32 = 1024

points.)

This analyses consist of the performing of the already introduced Monte Carlo simulation: the

program generates a huge number of random variates, applies the test to them, and records the

empirically found Type I Error rate. And, as outlined in the previous paragraph, does this for the

whole skewness-”kurtosis above minimum” grid. The number of Monte Carlo replications has to

be chosen high enough so that the fluctuations are reduced (due to the convergence). Because of

the highly complex investigation, tens of millions of replications might be needed, as illustrated on

Figure 3.3 on the example of robustness testing with respect to non-normality of the z-test (i.e. the

analysis of the actual α for nominal α = 0.05 under H0 and all other presumption holding, except

for the normality of the population from which the samples are coming).

This way, the program iterates through the skewness-kurtosis space and empirically investigates

the behavior of the test as a function of skewness and kurtosis resulting in a surface similar to the

one seen above.

3.2 The application of GP-GPU to speed up calculations

The above implementation of the program would be extremely time consuming, even on modern

personal computers. As we have already seen, the magnitude of the hypothesis testings necessary

at each skewness-kurtosis combination to achieve small stochastic fluctuations is ten million. As-

suming a grid with a size of 30×30, this means about 10 billion hypothesis testings. Also note that

even at the very small sample size of 10, this also requires the generation of 100 billion random

numbers. This would represent a prohibitive computational burden, even on the best personal

computers.

However, a novel computational technique, developed in the last half decade can help us in

an affordable way, without the need to employ a supercomputer. To understand it, note that

this problem can be solved in a parallel way: one might, for example, concurrently perform the

Monte Carlo simulations for two different skewness-kurtosis combinations. (As there are no inter-

dependences between them.) Furthermore, even the simulations for the same skewness-kurtosis

combination can be done in parallel (again, the result of one does not effect the other). Actually,

this task is a typical example for the so-called embarrassingly parallel problems, which require so

little communication between the sub-tasks (to which the problem can be decomposed) that they

26

START

Set parameters for the grid
search (region, grid density)

Solve the Fleishman-equations for ev-
ery skewness-kurtosis combination

Proceed to the next (or first)
skewness-kurtosis combination

Generate a standard normal variate

Transform the variate with the
Fleishman-parameters for the ac-

tual skewness-kurtosis combination

Have we reached
sample size?

Perform the investigated test on the sample

Have we reached the
pre-specified

replication number?

Store the Type I Error rate

Have we finished
iterating through the

skewness-kurtosis
space?

STOP

yes

no

yes

no

yes

no

Figure 3.1: Broad overview of the mechanism of our Monte Carlo simulation environment.

27

1 2 3 4
Γ3

5

10

15

20

25

30

35

Γ4

Figure 3.2: Skewness-kurtosis space with theoretical boundary for distributions (blue), lower bound
of the coverage of Fleishman distribution (red), and bound of ”kurtosis above minimum” (for a
given skewness) in yellow. Dots indicate a typical grid, where the properties of the statical test
are analyzed.

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0

3.5 Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10
12

14
16
18

Type I E
rror R

ate

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Robustness of one−sample, two−sided z−test w.r.t. non−normality

n=10; based on 32000 Monte Carlo simulations

(a) R = 32000

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0

3.5 Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10
12

14
16
18

Type I E
rror R

ate

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Robustness of one−sample, two−sided z−test w.r.t. non−normality

n=10; based on 320000 Monte Carlo simulations

(b) R = 320000

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0

3.5 Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10
12

14
16
18

Type I E
rror R

ate

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Robustness of one−sample, two−sided z−test w.r.t. non−normality

n=10; based on 3200000 Monte Carlo simulations

(c) R = 3200000

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0

3.5 Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10
12

14
16
18

Type I E
rror R

ate

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Robustness of one−sample, two−sided z−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations

(d) R = 32000000

Figure 3.3: Illustration for the effect of the number of Monte Carlo replications on the fluctuation
of the result.

28

Figure 3.4: Comparison of the architecture of a CPU (left) and a GPU (right). Source: [43].

can be performed with almost unlimited parallelism [13]. (P is close to 1 in Amdahl’s law1.) As

a matter of fact, the 10 billion hypothesis testings may be performed – in theory – by 10 billion

processors at the very same time!

Let us now begin the story at its other end. The video cards of personal computers underwent

an incredible development in the last decade. (Driven primarily by the need of 3D processing,

especially by computer games.) At one point of this development, video card manufacturers began

to include a chip on the cards which was dedicated to performing the computations that are

necessary in 3 dimensional image generation. These chips are called Graphical Processing Units

(GPUs) and represent an architecture that is specialized to the extreme: they can only perform a

limited number of operations efficiently (as opposed to the CPUs of the personal computers), but

in exchange they can perform these operations extremely efficiently. They are tailored exactly to

the needs of such graphical operations, and the necessary, highly optimized components are placed

in physically the same chip.

The most important aspect of this specialization is that the GPUs have relatively little on-chip

caching and flow control, but a very high number of processing units that can operate in parallel

[43]. (This fits the needs of 3 dimensional image generation, where it is typical that the very

same operation has to be performed (so no advanced caching or flow control is needed), but on

different data elements2.) Thus, GPUs are best at solving tasks the can be decomposed into sub-

tasks which are computation-intensive (not I/O-intensive) and can be executed in parallel (i.e not

heavily interdependent on the results of the other sub-tasks). Because of this, no sophisticated flow

control and caching is needed, so transistors may be rather assigned to increase parallel arithmetic

capacity. This is illustrated on Figure 3.4.

To be more precise, GPUs can be seen as modified stream processors, representing a special

SIMD (Single Instruction, Multiple Data) architecture [41]. With this specialization, GPUs can

reach a performance that beats not only the more expensive CPUs, but even smaller supercom-

puters – for tasks that have the above characteristic. . . but only for such tasks.

As an illustration that we are not exagarating when we talk about supercomputer-like per-

formance: an upper-level video card from NVidia’s newest GeForce line as of the end of 2012

(GeForce GTX650 Ti from the GeForce 600 series) has a reference single-precision floating-point

performance of 1425.4 GFLOPS with a release price of 149USD! For 499 USD, one can get 3090.4

GFLOPS (GeForce GTX680 from the GeForce 600 series [44]). As a comparison: this latter was

better than the performance of the best supercomputer in the world as of 2000 June (ASCI Red of

Sandia Laboratories, USA) [58]), but one could still get included in the TOP500 list of the world’s

most powerful supercomputers with this performance as of November 2006 [58] (500th place: Blade

Cluster BL-20P of Telecommunication Company, USA)! Again: for 499 USD!

1Amdahl’s law states [41] that if P is the proportion of a program that can be made to run in parallel, then
the maximum speed-up that can be achieved by using N processors to perform that parallel part is S (N) =

1

(1−P)+ P
N

−−−−→
N→∞

1
1−P .

2This is sometimes called data parallelism, which is a form of parallelism when the same operation is performed
simultaneously, but on different parts of the data to be processed. This is opposed to task parallelism (the other
end-point) where different operations are performed simultaneously, but on the same data.

29

It was realized very early at the history of GPUs that such fit-for-GPU tasks appear well out-

side the field of image generation, ranging from computational fluid dynamics to weather modeling.

What if these could be executed on the GPU instead of the CPU? Many researchers began specu-

lating that this way the performance of GPUs may be harnessed to perform a variety of non-image

generation tasks. The era of GP-GPU (General Purpose GPU computing) arrived [60].

At first, programmers had to develop complex re-writes of the original code to enable its GPU-

running (essentially they had to ”trick the GPU into believing” that it is performing a graphical

operation, in other words, real operations had to be rewritten, sometimes cumbersumbly, as graph-

ical operations). However, shortly GPU-manufacturers also realized this potential, and started de-

veloping programming languages that support the general purpose programming of GPUs3. With

these languages, such complicated tricks are no longer needed, GPUs can be directly programmed

to general-purpose tasks. (Their special architecture, of course, still has to be respected, as already

emphasized.)

Nowadays, the most widely used open-source GP-GPU computing language is OpenCL [20],

while the most prevalent proprietary framework is NVidia’s CUDA [42].

3.3 Implementation details

We performed the implementation of our Monte Carlo simulational environment for the empirical

investigation of statistical tests based on GP-GPU – this way, we could achieve the performance

necessary for such simulations in an affordable way. The plausibility of such implementation was

discussed in detail in Section 3.2.

The actual implementation was done under NVidia’s Compute Unified Device Architecture

(CUDA) computing platform [42]. This platform enables the usage of a variety of programming

languages (C, C++, Fortran) for GP-GPU computing through so-called language extensions4.

These extensions make the expression of parallel processing possible (and also introduce the nec-

essary restrictions).

We have used to CUDA C/C++ extension, under Microsoft Visual Studio 2008 integrated

development environment [49].

A CUDA program generally consists of ”ordinary” parts that run sequentially on CPU, and calls

to so-called kernels which run in parallel on GPU. The design of a kernels has to take this parallelity

into account (e.g. they can not rely on each other’s results without further synchronization).

The kernels are executed by so-called threads. These are the basic units of the GPU processing,

which run in parallel. (These threads will be mapped to the physical processing units (called

streaming multiprocessor) of the GPU, but there is no need to manually specify this mapping – it

is done transparently in the background by an automatic mechanism. This way, the program is

automatically scaled to whatever capacity the GPU has on which it is run.)

Threads are joined together to so-called thread blocks, or shortly blocks in a one-, two- or

three-dimensional manner. This is simply done to adapt to the real-world applications, where the

task often has an intrinsic multidimensional structure (such as visualizing an array or a volume).

In these cases, it is typical that the parallel parts pertain to the elements of this structure (pixel

or voxel), hence the application of thread blocks reflects the true nature of the problem, making

its handling more intuitive.

3Today, NVidia is even manufacturing ”video cards” (NVidia Tesla) that do not have graphical output at all
[45], i.e. they are solely useful for GP-GPU computing.

4There are other ways to enable GP-GPU computing for a language as well, such as the usage of CUDA-
accelerated libraries or wrappers.

30

Figure 3.5: Hierarchy of threads, blocks and grids in the CUDA-model. Source: [43].

Thread blocks are then organized to grids, which can again be one-, two- or three-dimensional.

The overall structure is shown on Figure 3.5.

In our case, it was logical to use a two-dimensional block structure, where dimensions represent

skewness and kurtosis, i.e. each block represents a certain skewness-kurtosis combination. We

chose to use 32 levels in both dimensions as it well fits the hardware architecture and provides

enough granularity, so that the results will be smooth enough. This means in other words, that

the program works in parallel in 32 · 32 = 1024 different skewness-kurtosis combinations at the

same time. (Every thread and every block automatically receives a unique identification number

from which it knows its own position, that is how they can do different tasks.)

Within each thread block, we specified 32 parallel threads. For architectural reasons [43] it is

beneficial if the number of threads per block is a multiple of 32, so this was the minimum effective

number. More could not be used because of the limitations imposed by the random number

generator, as it will be immediately discussed.

To sum up, there were 32 · 32 · 32 = 32768 parallel threads in our implementation. To further

speed up calculations, we used another trick: one call to the kernel performs more than one (typi-

cally 100) simulational replication. (This is advantageous, because the slow part in the processing

is the communication between the host (i.e. the computer) and the device (i.e. the video card). By

forcing the kernel to perform more replications before it starts communicating with the host, we

shift the ratio of the fast and slow parts for the former.)

Let us now see the operation of the program in detail! After initialization, it first solves the

Fleishman equations for the grid points which will be scanned. For that end, we used a discrete

Newton-algorithm from the GSL (GNU Scientific Library) library [15]. Results (which are stored

as a matrix of data structures specifically declared to hold Fleishman coefficients) are then copied

to the global memory of GPU. This memory is persistent across the whole running of the program,

so this copying is needed only once – every time a thread needs the coefficients, it just has to look

it up in the global memory. (Every threads receives the pointer to the memory area where these

coefficients are stored.)

There is also a dedicated memory area in the global memory of the GPU where the results

are collected after one round of simulations. (Remember that one round means performing test at

every skewness-kurtosis combination, moreover, it means performing 32 tests.) This memory area

is organized so that every block has an own space, where it has to record the number of rejections

out of the 32 testings within the block. The avoid race conditions, only one thread can access this

memory area within a block: there is an array in shared memory for every block with as many

elements as threads (32 currently); only this is directly accessed by the threads of a block. (This is

31

also advantageous because shared memory is much faster then global memory.) Thread #0 has the

task to synchronize it with the area for the block in the global memory. This is solved by including

a barrier-type synchronization instruction at the end of the kernel, which forces every thread to

stop at that point until everyone is at that point (that is: every thread finished processing). At

that moment Thread #0 reads out the per-block storage, aggregates the results, and uploads it to

the area of the block in the global memory. As this is also a persistent storage, the next time the

kernel is called, it can just increment this cell with the number of rejections in the new round.

As far as the operation of the kernel is concerned, it begins with the random number generation.

Parallel Mersenne twister algorithm [48] is used to generate variables with uniform distribution

which are then transformed with the Box-Müller algorithm [8] so that we obtain the standard

normal variates necessary for the Fleishman-distribution.

The parameters of the Mersenne twisters are set with the dcmt algorithm [38]. The only

drawback is that to achieve maximum performance, every thread should have an own random

number generator. However, the largest parameter set created in advance contains ”only” 32768

random number generators, and the creation of a larger parameter set is hopeless (practically

requires a supercomputer). That was the reason why we used only 32 threads per block – this way,

we just used up all random number generators.

After a random number is generated, the thread reads out the position (i.e. skewness-kurtosis)

of the block in which the thread is, then reads out the corresponding element from the array

of Fleishman coefficients (i.e. the coefficients that are needed to transform the standard normal

variate to a variate with that skewness and kurtosis) and performs the transformation.

During the designing of this program, our key aim was modularity : we wanted to create an

environment which can be easily extended, even by non-programmers. For that end, every single

statistical test is written as a separate function. The kernel only calls the function, passes the

sample as an array of float numbers, and waits for an accept/reject output (at the given significance

level). The best part is that the test can be a simple C program, the whole parallelization is

completely transparent – the environment can be extended with new tests without any knowledge

in GPU programming!

After the kernel is called enough times (typically tens of millions are needed for smooth results

which means about 10000 calls, as every block has 32 threads, and every thread performs 100

replications), the result (the matrix which contains the fraction of rejections at every skewness-

kurtosis combination) is written in a serialized format, along with the most important descriptors

of the simulation (number of runs, parameters of the grid etc.) to be used by the visualization

program.

To have a comparison point for the performance results, Table 3.1 lists the most important

parameters of the GPU we used to perform the calculations that are presented in this thesis. It

worth noting when interpreting results that this is a low-end video card by today’s standards. . .

The user interface of the program during running is shown on Figure 3.6.

After finishing the calculations, the program display a performance summary as a benchmark

(Figure 3.7).

We can see that in this case (testing one-sample z-test with a sample size of 10) the average,

sustained performance of our program was in excess to 60 millio hypothesis testing per second.

3.4 Visualization of the results

Our simulational environment outputs – as described in Section 3.3 – the results (actual αs or

powers for different skewness-kurtosis combinations) as a serialized matrix. We have developed

32

Parameter Value

Name NVidia GeForce 9600 GT
GPU G94a/b
Fab 65/55 nm
Number of stream processors 64
Number of raster operation units 16
Number of texture address/texture filter units 32
Fillrate 20.8 billion texel/s
Core clock 650 Mhz
Unified shader clock 1625 MHz
Memory clock 1800 MHz
Memory 512 MB GDDR3
Memory bandwidth 57.6 GB/s
Transistor count 505 million
Floating-point performance 312 GFLOPS

Table 3.1: Parameters of the GPU used to perform the calculations that are presented in this
thesis.

Figure 3.6: User interface of the developed simulational environment during running.

33

Figure 3.7: User interface of the developed simulational environment after completing simulations.

34

a program under the R statistical program package [50] (version 2.15.1) to perform an effective

visualization of such matrices (see Appendix C.1.)

The program first reconstructs the matrix and performs the visualization afterwards; either

with perspective plot or with contour plot. The former is more spectacular, and gives an overall

impression more quickly, but the latter is more precise, as no part of the visualization can be lost

by being in shadow [6].

The visualization program also interprets the supplementary information provided by the

CUDA program (number of runs, parameters of the grid etc.) to automatically label the plots

accordingly.

35

Chapter 4

Empirical investigation of

statistical tests with Fleishman

distribution

In this Chapter, we will synthetise the concepts already introduced: we will use Fleishman distribu-

tion (Chapter 2) to solve the problems (robustness and power investigation) outlined in Chapter 1

with the method (Monte Carlo simulation with GP-GPU) discussed in Chapter 3.

We will go through the practically most important tests and present both the results for the

empirical investigation of their properties, and the discussion of these results, which address the

most important findings.

We will first present the results for the robustness of parametric test w.r.t. their distributional

assumption in Section 4.1, and then, we will turn to power testing of non-parametric tests in

Section 4.2.

4.1 Robustness testing of parametric tests

In this Section, we review robustness of parametric tests (i.e. tests that assume a distribution family

for the population) with respect to their distributional assumption. (Which will be normality in

every case.)

We will review one-sample, two-sample and K-sample tests as well, but we will confine ourselves

to two-sided tests (to make the discussion more compact).

As already noted, the length of discussion will be varying; we will focus on the interesting

aspects of the tests.

4.1.1 One-sample, two-sided z-test

One-sample, two-sided z-test is a test for the hypothesis pair

H0 : µ = µ0 (4.1)

H1 : µ 6= µ0,

for µ0 ∈ R and µ being the expected value of the population from which the sample is coming. It

has the following assumptions:

36

Skewness

0.0
0.5

1.0
1.5

2.0

2.5

3.0

3.5

Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10

12

14
16

18

Type I E
rror R

ate

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Robustness of one−sample, two−sided z−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations

(a) Perspective plot

0.048

0.050

0.052

0.054

0.056

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided z−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(b) Contour plot

Figure 4.1: Robustness of the one-sample, two-sided z-test with respect to non-normality with
Fleishman distribution (nominal α = 0.05)

• The distribution of the population is normal.

• The variance of the population is σ2
0 constant known a priori.

• The sampling is iid.

The test statistic and its null distribution is:

Z (X) =
1
n

∑n
i=1Xi − µ0

σ0/
√
n

H0∼ z. (4.2)

One-sample z-test is rarely used in practice because the a priori known population variance is

irrealistic in almost every practical setting. For this reason, we will only shortly discuss this test.

Results for the robustness of this test with respect to non-normality with Fleishman distribution

are shown on Figure 4.1 for n = 10.

It can be seen that the test is very highly robust with respect to non-normality: the smallest

actual α was 0.04698 on the whole testing grid, the largest was 0.05690. This can be attributed to

the a priori known variance.

4.1.2 One-sample, two-sided t-test

One-sample, two-sided t-test is a test for the hypothesis pair

H0 : µ = µ0 (4.3)

H1 : µ 6= µ0,

for µ0 ∈ R and µ being the expected value of the population from which the sample is coming. It

has the following assumptions:

• The distribution of the population is normal.

• The sampling is iid.

37

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

K
urtosis −

 (2 * S
kew

ness^2 +
 3)

0

2

4

6

8

10

12

14
16
18

Type I E
rror R

ate

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations

(a) Perspective plot

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(b) Contour plot

Figure 4.2: Robustness of the one-sample, two-sided t-test with respect to non-normality with
Fleishman distribution (nominal α = 0.05)

The test statistic and its null distribution is:

t (X) =
1
n

∑n
i=1Xi − µ0

s∗/
√
n

H0∼ t (n− 1) . (4.4)

It can be seen that this test is very similar to the z-test, the only exception being that it does

not presume known population variance. As a consequence it has less power (it also has to estimate

the variance from the sample), but in practice this variance is almost never known a priori, so t-test

is the one that is almost exclusively used instead of the z-test. For this reason we will discuss our

results in more detail.

Results for the robustness of this test with respect to non-normality with Fleishman distribution

are shown on Figure 4.2.

This point is perhaps the best to elaborate on another issue (that affects every result presented

in this format). The problem is with the scaling of the kurtosis axis. Note that it is not ”true”

kurtosis itself, but rather kurtosis minus 2γ2
3 +3. As already explained, this is necessary to keep the

scanning in the feasible region (and, in addition, within the coverage of the Fleishman distribution).

Strictly speaking, there is still no problem: we might still plot skewness and true kurtosis for

presenting the results. However, this would be a ”graphically” very unfortunate choice: most of

the plot would be empty, with the part pertaining to high values of skewness almost completely

shifted compared to those that belong the low skewness (due to the rapid growth of the 2γ2
3 + 3

function). This would be especially apparent for perspective plots.

For this reason, we used the ”kurtosis above minimum” axis instead of the usual kurtosis. This,

however, introduces a distortion: points are displaced based on their skewness. This is illustrated

on Figure 4.3. (See also Figure 3.2 for this discussion!) This figure shows different slices of the

surface shown on Figure 4.2, along the skewness axis (i.e. Type I Error rate vs. skewness for

different levels of kurtosis, Subfigures 4.3a and 4.3b) and along the kurtosis axis (i.e. Type I Error

rate vs. kurtosis for different levels of skewness, Subfigures 4.3c and 4.3d). The figure shows the

effect of using the transformed kurtosis (Subfigures 4.3a and 4.3c) vs. using the ”true” kurtosis

38

(Subfigures 4.3b and 4.3d).

Subfigure 4.3b, which required slicing the surface parallel to the skewness axis (including points

which were possible not sampled at the original investigation) was created by bilinear interpolation

using the R library fields [14].

For the reasons described above we will still use figures with ”kurtosis above minimum” axes,

but these considerations should be kept in mind when interpretating them.

Overall, the test is not robust to non-normality: it gets too liberal, with actual α going up

to almost 0.2 in our scenarios. It is especially sensitive to skewness, but kurtosis also affects its

behavior. This conclusion is in concordance with the literature findings (Section 1.5).

There is one final phenomenon we want to demonstrate on this test: the effect of sample

size. Fiugre 4.4 shows the same plots as in Figure 4.2, but with varying sample sizes this time

(n = 10, 20, 50, 100).

One can wonderfully observe the effect of the Central Limit Theorem [10].

4.1.3 Two independent sample, two-sided t-test

Two independent sample, two-sided t-test is a test for the hypothesis pair

H0 : µ1 = µ2 (4.5)

H1 : µ1 6= µ2,

with µ1 and µ2 being the expected values of the populations from which the samples are coming.

It has the following assumptions:

• The distributions of the populations are normal.

• The variances of the populations are equal (but not necessarily known).

• The sampling is iid.

The test statistic and its null distribution is:

t (X) =
1
n

∑n
i=1X1,i − 1

n

∑n
i=1X2,i√

1
n1

+ 1
n2
·
√

(n1−1)s∗21 +(n2−1)s∗22

n1+n2−2

H0∼ t (n1 + n2 − 2) . (4.6)

Two-sample t-test is perhaps the most widely used test in many areas of applied statistics.

Results for the robustness of this test with respect to non-normality with Fleishman distribution

are shown on Figure 4.5 for n = 10 (in both groups).

It can be seen that the test is again not especially robust, but – in contrast to the one-sample

variant – it gets too conservative (not too liberal) for non-normal populations, with actual α going

down to about 0.02 in our test. This conclusion is in concordance with the literature findings

(Section 1.5).

Note that this investigation presumed that both population has the same – non-normal – distri-

bution. The investigation can be made deeper by including the possibility of different background

distributions for the two populations – at the cost of more dimensionality, which makes the illus-

tration, understooding of the results more complicated.

39

0 1 2 3 4

0.
05

0.
10

0.
15

0.
20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations
Skewness

Ty
pe

 I
E

rr
or

 R
at

e

Kurtosis: 2 * Skewness^2 + 3 +...

...+0

...+5

...+10

...+15

(a) Slicing parallel to the skewness axis, using trans-
formed kurtosis

0 1 2 3 4

0.
05

0.
10

0.
15

0.
20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations
Skewness

Ty
pe

 I
E

rr
or

 R
at

e

Kurtosis

5

10

15

20

(b) Slicing parallel to the skewness axis, using orig-
inal kurtosis

0 5 10 15 20

0.
05

0.
10

0.
15

0.
20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations
Kurtosis − (2 * Skewness^2 + 3)

Ty
pe

 I
E

rr
or

 R
at

e

Skewness

0

1

2

3

(c) Slicing parallel to the kurtosis axis, using trans-
formed kurtosis

0 10 20 30 40

0.
05

0.
10

0.
15

0.
20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations
Kurtosis

Ty
pe

 I
E

rr
or

 R
at

e

Skewness

0

1

2

3

(d) Slicing parallel to the kurtosis axis, using original
kurtosis

Figure 4.3: Illustration of the distortion effect of using ”kurtosis above minimum” instead of
kurtosis (see also Figure 3.2).

40

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

K
urtosis −

 (2 * S
kew

ness^2 +
 3)

0

2

4

6

8

10

12

14
16
18

Type I E
rror R

ate

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations

(a) Perspective plot, n = 10

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=10; based on 3.2e+07 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(b) Contour plot, n = 10

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

K
urtosis −

 (2 * S
kew

ness^2 +
 3)

0

2

4

6

8

10

12

14
16
18

Type I E
rror R

ate

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=20; based on 3.2e+07 Monte Carlo simulations

(c) Perspective plot, n = 20

0.04

0.06

0.08

0.10

0.12

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=20; based on 3.2e+07 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(d) Contour plot, n = 20

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

K
urtosis −

 (2 * S
kew

ness^2 +
 3)

0

2

4

6

8

10

12

14
16
18

Type I E
rror R

ate

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=50; based on 3200000 Monte Carlo simulations

(e) Perspective plot, n = 50

0.05

0.06

0.07

0.08

0.09

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=50; based on 3200000 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(f) Contour plot, n = 50

Skewness

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

K
urtosis −

 (2 * S
kew

ness^2 +
 3)

0

2

4

6

8

10

12

14
16
18

Type I E
rror R

ate

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=100; based on 3200000 Monte Carlo simulations

(g) Perspective plot, n = 100

0.050

0.055

0.060

0.065

0.070

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=100; based on 3200000 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(h) Contour plot, n = 100

Figure 4.4: Impact of sample size on the robustness of the one-sample, two-sided t-test (nominal
α = 0.05).

41

Skewness

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10

12

14

16
18

Type I E
rror R

ate

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Robustness of two independent sample, two−sided t−test w.r.t. non−normality

n=20; based on 3.2e+07 Monte Carlo simulations

(a) Perspective plot

0.025

0.030

0.035

0.040

0.045

0.050

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=20; based on 3.2e+07 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(b) Contour plot

Figure 4.5: Robustness of the two independent sample, two-sided t-test with respect to non-
normality with Fleishman distribution (nominal α = 0.05)

4.1.4 K independent sample ANOVA

K independent sample ANOVA is a test for the hypothesis pair

H0 : µ1 = µ2 = . . . = µk ≡ µ (4.7)

H1 : ∃1 ≤ j ≤ k : µj 6= µ,

with µi being the expected value of population i. It has the following assumptions:

• The distributions of the populations are normal.

• The variances of the populations are equal (but not necessarily known).

• The sampling is iid.

The test statistic and its null distribution is:

F (X) =

∑K
j=1

∑nj
i=1

(
Xij −Xj

)2

/ (K − 1)∑K
j=1 nj

(
Xj −X

)2

/ (n−K)

H0∼ F (K − 1, n−K) . (4.8)

Results for the robustness of this test for K = 3 with respect to non-normality with Fleishman

distribution are shown on Figure 4.6 for n = 10 (in all groups).

It can be seen that the test’s behavior is very similar to the two-sample t-test.

4.2 Power testing of non-parametric tests

In this Section, we will turn our attention to the power of non-parametric tests (i.e. tests that do

not assume a distribution family for the population).

42

Skewness

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10

12

14

16
18

Type I E
rror R

ate

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Robustness of three independent sample ANOVA w.r.t. non−normality

n=30; based on 3200000 Monte Carlo simulations

(a) Perspective plot

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of one−sample, two−sided t−test w.r.t. non−normality

n=30; based on 3200000 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(b) Contour plot

Figure 4.6: Robustness of the K independent sample ANOVA (K = 3) with respect to non-
normality with Fleishman distribution (nominal α = 0.05)

In power testing, we will always assume that presumptions hold (these, however, do not specify a

distribution for the population – this is the point where the application of Fleishman distribution, or

similar distribution becomes necessary), but the H0 does not. Because of this, we will intentionally

use populations that violate the condition in H0.

4.2.1 Two-sample, two-sided Mann-Whitney U-test

The hypotheses of the two-sample, two-sided Mann-Whitney U -test can be formulated in many

(mostly equivalent) ways. One possibility is to use the so-called stochastic equality

H0 : P (X > Y) = P (X < Y) (4.9)

H1 : P (X > Y) 6= P (X < Y) ,

It can be seen that it in fact imposes no presumption on the population of X and Y . It, however,

has other constraints:

• It assumes a shift-model, i.e. that Y has a same distribution as X in shape, but, perhaps

shifted.

• The sampling is iid.

First, let us ”check” whether the test in fact lives up to expectations! We will perform a

robustness testing (which theoretically should not be effected at all by different skewness-kurtosis

levels). Indeed,this happens, see Figure 4.7.

Turning to our true question, let us perform a power analysis! For that, we have to presume

how we want to violate H0 – now we introduced a δ = +0.5 shift in one of the samples. The results

are shown on Figure 4.8.

43

Skewness

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10

12

14

16
18

P
ow

er

0.040

0.042

0.044

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Robustness of two−samples Mann−Whitney U test w.r.t. non−normality

n=20; based on 3200000 Monte Carlo simulations

(a) Perspective plot

0.0496

0.0498

0.0500

0.0502

0.0504

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Robustness of two−samples Mann−Whitney U test w.r.t. non−normality

n=20; based on 3200000 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(b) Contour plot

Figure 4.7: Robustness of the two-sample, two-sided Mann-Whitney U -test with respect to non-
normality with Fleishman distribution (nominal α = 0.05)

Skewness

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ku
rto

si
s

−
(2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

0

2

4

6

8

10

12

14

16
18

P
ow

er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Power of two−samples Mann−Whitney U test for delta = 0.5

n=20; based on 320000 Monte Carlo simulations

(a) Perspective plot

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

Power of two−samples Mann−Whitney U test for delta = 0.5

n=20; based on 320000 Monte Carlo simulations
Skewness

K
ur

to
si

s
−

 (
 2

 *
 S

ke
w

ne
ss

^2
 +

 3
)

(b) Contour plot

Figure 4.8: Power analysis of the two-sample, two-sided Mann-Whitney U -test for a shift of δ =
+0.5.

44

We can see that the background distribution in fact has a major effect on the power of the

test.

45

Chapter 5

Limitations of Fleishman

distribution

In this Chapter, we present one limitation of our approach that is induced by the application of a

distribution that is selected based on its first four moments.

In Section 5.1, we introduce the problem itself, and in Section 5.2 we refer the most important

results that pertain to this limitation.

5.1 A problem statement

The whole approach that utilizes Fleishman distributions is based on the implicit assumption

that a distribution is well-characterized by its first four moments. To make the statement ”well-

characterized” more precise: this approach implicitly assumes that the test’s behavior for a given

population can be adequately grabbed by the population’s first four moments.

However, examples can be shown that might make us uncertain about this assumption: it is

not true that distributions are necessarily similar if they have identical first four moments. Fig-

ure 5.1 shows the pdf of the mixture normal distribution 3
4N (0, 1)+ 1

4N
(
2, 22

)
and the Fleishman

distribution with identical first four moments.

The result is embarrassing: the pdfs are visibly different. While this does not necessarily

invalidate our analysis (despite the difference of the pdfs, the tests might show similar behavior, for

example, if they are dominantly dependent on the first four moments, and not on the information

about the distribution beyond its first four moments), this is still not comforting, at best.

What if we want to investigate the robustness of a test for an applied statistical field where

such mixture distributions are typical? Using Fleishman distribution for the empirical investigation

would then imply that we base our investigation on a distribution that has visibly different pdf than

the typical distributions encountered on that field. This makes the question of how representative

are the previous results in Chapter 4 unavoidable. (This is not an academical question: such

mixture-type distributions are in fact often encountered for example in biostatistics: often, healthy

and sick subjects have similar distribution for a given marker, but with shifted mean. Another

typical example is the distribution of parasites in quantitative parasitology [55].)

We will address the question of how similar the behavior of the tests are if the first four moments

are identical, i.e what limits can be given if we have information on the equality of the first for

moments (but nothing more) in Chapter 5. In the meantime, let us examine what differences are

possible between the pdfs of two distributions if they have a certain number of identical moments!

46

-2 2 4 6

0.1

0.2

0.3

0.4

0.5

Figure 5.1: Pdf of the mixture normal distribution 3
4N (0, 1)+ 1

4N
(
2, 22

)
(blue) and the Fleishman

distribution with identical first four moments (red).

First, let us agree that we will measure the difference between two pdfs with total variation distance

(TVD), that is, essentially with the L1 distance between the pdfs. (We will confine ourselves to

continuous distributions, so this definition is satisfactory.)

First note that increasing the number of matching moments does not necessarily help in this

sense (in extreme case, it can even make the TVD larger).

At first glance, this might be surprising, but actually it is understandable by considering what

higher moments mean: they carry information on the tail of the distribution [35] (the higher

moment we consider, the more distant part of the distribution is important), so including more

moments might make the approximation of the tails better, but has almost nothing to do with

the central part of the distribution. There, the pdf might even be more different (as far as the

restriction on the smaller moments are fulfilled), because the restriction imposed through higher

moments does not effect the distribution’s central part, which can still arbitrarily contribute to

TVD. This is in concordance with the findings of McCullagh [39], who demonstrated that two

distributions with visibly different pdf (note, that McCullagh also used TVD to measure this) can

have virtually identical moment-generating function. With a slight modification of his example,

we can create an almost perfect demonstration for our point: consider the pdfs f1 (x) = φ (x)

and f2 (x) = φ (x) ·
(
1 + cos (2πx)

)
· 1

1+e−2π2 , where φ (x) = 1√
2π
e−

x2

2 is the standard normal

density. These pdfs are shown on Figure 5.2. They are visible different, their TVD (through

numerical integration) is 0.6366. In spite of this, their moments are virtually equal, with the

largest difference relative to f1 (x)’s moments being 0.0075% among the first 50 moments! Note

however, that this ”virtual equality” only stands in relative terms; the absolute difference might

still be very high, as the numerical value of moments increases extremely fast [64, 37]. This poses

problems when the moments are numerically matched.

The central result here is that of Akhiezer [2], who has shown that the L∞ distance of the

cdfs (but not the TVD) can be limited based on the moments of the distribution, using the so-

called moment matrix ([34]) utilizing an appropriately defined series of orthogonal polynomials.

Unfortunately this bound, however, can not be sharp, of course, in terms of pdfs, as derivatives

(value of pdf) in a point can be arbitrarily different even if the cdf takes the exact same value.

Other limits for the difference of cdfs has been also given [52].

We are not aware, however, of any non-trivial limit for the difference of pdfs as a function of

47

-4 -2 2 4

0.2

0.4

0.6

0.8

Figure 5.2: Probability density functions f1 (x) and f2 (x).

identical moments.

One might wonder if the phenomenon that the TVD of the approximation of a distribution does

not seem to converge to 0 is not a contradiction if the distribution has moment-generating function,

hence it is surely uniquely determined by its moments [10, 7]. This contradiction, however, is

apparent. While it is true that an infinite number of moments uniquely determines the distribution,

this is not a ”convergent series expansion”, i.e. there is no limit whatsoever on the error if we

truncate the series at some point. Also, the matching of the moments can only be performed

numerically in practice (and, for k > 4, even in theory) which leads us back to the problems

exposed in connection with the McCullagh-example.

5.2 Comparion with mixture normal distributions

Therefore, the question is simply whether a given test’s properties depend mostly only on the

first four moments of the population (which would mean that the different pdfs do not pose a

problem), or these properties are also effected by information in the distribution beyond its first

four moments.

Let us notice that this question can be again investigated empirically! We can choose a ”ref-

erence” distribution (from some known family) and perform a usual robustness-analysis using this

family. Then, we can generate Fleishman distribution with the same first four moments as this

reference distribution, and repeat the analysis. By comparing the results, we can decide whether

the inclusion of the first four moments ”was enough”.

Due to the reasons outlined above (i.e. their significance in biostatistics), we chose mixture

normal distributions as a reference distribution. We have in fact done this investigation for many

mixture normal distributions – the results are not shown here in detail to space considerations, but

are available at [53, 11]. These results suggest that for simple cases, like the robustness analysis of

the parametric t test, there is no major difference between the results obtained with mixture normal

and moment-matched Fleishman distribution, except for extremely small sample sizes. However,

the contrary is true for the power testing of the non-parametric Mann-Whitney U -test: there can

be major differences in the calculated power between the two approaches.

The explanation for this phenomenon is quickly understandable if we think of the most impor-

tant approach to analytical robustness investigation of the t-test: the different series expansions.

48

They are all based on some approximation of the distribution which includes only the first few mo-

ments. Should they provide a good approximation with only four moments (taking the operation

of the t-test into account), we can expect that the behavior of the t-test is also basically determined

by these moments, hence it will similar for even visible different distributions, provided that they

have identical first four moments.

This is, however, not true for the power-analysis of the Mann-Whitney U -test for which no

such series expansion is available. Hence, it is no surprise that the results can be vastly different

between mixture normal and Fleishman, even though they have identical first four moments.

These warn us to be careful when we want to generalize the results obtained with Fleishman

distribution: while they might be very useful in general, their representativeness might also be

questioned, for example in biostatistics. In such situations the best (if possible) is perhaps to use

distributions that actually came from that field (previous studies etc.).

49

Chapter 6

Conclusion

The investigation of the properties of statistical tests is of crucial importance in modern statistics.

This is underlined by the significance of these tests on the application areas, and the myriad of

situations when their properties become important. (Especially as this is often overlooked by casual

users of statistics.) Can we apply the t-test even if we are not completely sure about population

normality? What power can we expect from the Mann Whitney U -test for a given background

distribution? Such question often crop up in many areas of applied statistics, such as biostatistics.

Testing the robustness of parametric tests, and the power of non-parametric tests poses a special

problem, as they require the application of a per definitionem non-specified distribution. Even if

we agree that this means a distribution with given skewness and kurtosis, the problem is far from

being solved.

We introduced a distribution called Fleishman distribution in this thesis that is able to meet

this expectation: it can take (almost) arbitrary skewness and kurtosis with proper parameterizing.

We discussed many aspects of this distribution in detail.

Using the Fleishman distribution one can perform an empirical investigation of a statistical

test through Monte Carlo simulation. However, its computational burden still poses a problem

even nowadays. To solve this issue, we successfully applied a novel computational method, called

General Purpose GPU computing to this problem. This approach harnesses the incredible capacity

of modern video cards that can be used for highly parallel, computation-intensive problems like this

empirical investigation of statistical tests. We developed a computer environment that is capable

to perform more than 70 million t-tests per second (n = 10) even on low-end video cards. The

environment is modular and highly flexible, so that it facilitates further extension.

As a demonstration, we performed investigations about many routinely used statistical tests

with this environment. We also pointed out one limitation of this approach, we should warn us to

use the results of such investigation with care.

Overall, this thesis presented a novel, flexible, high-performance solution to empirically in-

vestigate properties of statistical tests based on the Fleishman distribution and demonstrated its

applicability in practice.

There are, of course, many ways on which this work can be further developed. While the tests

currently included in the environment are the practically most important ones, there are dozens,

if not hundreds, that could be still implemented. This way, a more general framework for the

research of statistical tests could be developed.

In addition to that, many properties are not yet investigated: the effect of homogeneity of

variances for the t-test, the effect of different population distributions for the two-sample and k-

sample tests, and so on. By including these in the environment, it would gain further power for

50

such studies. It might as well facilitate the development of new statistical tests, or the correction

of the already used ones.

Finally, our environment may also be used in education, as it can spectacularly illustrate basic

statistical principles, like the effect of Central Limit Theorem in practice.

51

Appendix A

Wolfram Mathematica source

codes

A.1 Coverage of important distributions

1 Skewness [LogNormalDistr ibution [\ [Mu] , \ [Sigma]]]

2 Kurtos i s [LogNormalDistr ibution [\ [Mu] , \ [Sigma]]]

3 LN = ParametricPlot [{Sqrt [−1 + Eˆ\ [Sigma] ˆ 2] (2 + Eˆ\ [Sigma] ˆ 2) , −3 +

4 3 Eˆ(2 \ [Sigma] ˆ 2) + 2 Eˆ(3 \ [Sigma] ˆ 2) + Eˆ(

5 4 \ [Sigma] ˆ 2) } , {\ [Sigma] , 0 .00001 , 2} , AxesOrigin −> {0 , 0} ,

6 PlotRange −> {{−0.1 , 4} , {0 , 50}} , AspectRatio −> 1 ,

7 PlotStyle −> Cyan]

8 Skewness [Pare toD i s t r ibu t i on [k , \ [Alpha]]]

9 Kurtos i s [Pa r e toD i s t r ibu t i on [k , \ [Alpha]]]

10 Par = ParametricPlot [{ (

11 2 Sqrt [(−2 + \ [Alpha]) /\ [Alpha]] (1 + \ [Alpha])) /(−3 + \ [Alpha]) , (

12 3 (−2 + \ [Alpha]) (2 + \ [Alpha] +

13 3 \ [Alpha] ˆ 2)) /((−4 + \ [Alpha]) (−3 + \ [Alpha]) \ [Alpha]) } , {\
14 \ [Alpha] , 4 . 01 , 1000} , AxesOrigin −> {0 , 0} ,

15 PlotRange −> {{−0.1 , 4} , {0 , 50}} , PlotStyle −> Brown,

16 AspectRatio −> 1]

17 Show[{LN, Par ,

18 ListPlot [{{{ Skewness [Uni formDist r ibut ion []] ,

19 Kurtos i s [Uni formDist r ibut ion []] } } , {{Skewness [

20 NormalDistr ibut ion [0 , 1]] ,

21 Kurtos i s [NormalDistr ibut ion [0 , 1]]}} , {{Skewness [

22 Exponent i a lD i s t r ibut i on [1]] ,

23 Kurtos i s [Exponent i a lD i s t r ibut i on [1]] } } } ,

24 PlotMarkers −> {Automatic , Medium} ,

25 PlotStyle −> {Purple , Green , Blue }] ,

26 Plot [xˆ2 + 1 , {x , 0 , 4} , PlotStyle −> Red, F i l l i n g −> Bottom ,

27 F i l l i n g S t y l e −> D i r e c t i v e [Opacity [0 . 2] , Red]] } , AspectRatio −> 1 ,

28 AxesLabel −> {” \ !\ (\∗ SubscriptBox [\ (\ [Gamma]\) , \(3\)]\) ” ,

29 ” \ !\ (\∗ SubscriptBox [\ (\ [Gamma]\) , \(4\)]\) ” }]

A.2 Power of the z-test

1 TestPower [\ [Mu] , \ [Alpha]] :=

2 CDF[NormalDistr ibut ion [\ [Mu] − 175 , 1] ,

3 Quantile [NormalDistr ibut ion [0 , 1] , \ [Alpha] / 2]] + (1 −
4 CDF[NormalDistr ibut ion [\ [Mu] − 175 , 1] ,

5 Quantile [NormalDistr ibut ion [0 , 1] , 1 − \ [Alpha] / 2]])

6 Plot [TestPower [\ [Mu] , 0 . 0 5] , {\ [Mu] , 170 , 180} ,

7 Epilog −> {Dashed , Line [{{170 , 0 .05} , {180 , 0 . 05}}]} ,

8 AxesLabel −> {” \ [Mu] ” , ”Power (1−\[Beta]) ” }]

9 TestPowerMC [\ [Mu] , \ [Alpha] ,

10 n] := (n −
11 Count [RandomVariate [NormalDistr ibut ion [\ [Mu] − 175 , 1] , n] ,

52

12 x / ; x > Quantile [NormalDistr ibut ion [0 , 1] , \ [Alpha] / 2] &&

13 x < Quantile [NormalDistr ibut ion [0 , 1] , 1 − \ [Alpha] / 2]]) /n

14 p100 = Plot [TestPowerMC [\ [Mu] , 0 . 05 , 100] , {\ [Mu] , 170 , 180} ,

15 Epilog −> {Dashed , Line [{{170 , 0 .05} , {180 , 0 . 05}}]} ,

16 AxesLabel −> {” \ [Mu] ” , ”Power (1−\[Beta]) ”} , PlotPoints −> 2000 ,

17 MaxRecursion −> 0 , PlotLabel −> ”R=100”]

A.3 Robustness of the z-test

1 distNorm = NormalDistr ibut ion [\ [Mu] 0 , \ [Sigma] 0]

2 distsumNorm = NormalDistr ibut ion [n∗\ [Mu] 0 , Sqrt [n] ∗ \ [Sigma] 0]

3 distGamma = GammaDistribution [a , b , 1 , 0]

4 distsumGamma = GammaDistribution [n∗a , b , 1 , 0]

5 TestStatNorm =

6 Trans formedDistr ibut ion [(1 / n∗X −
7 Mean[distNorm]) /(StandardDeviation [distNorm]/ Sqrt [n]) ,

8 X \ [D i s t r ibuted] distsumNorm]

9 TestStatGamma =

10 Trans formedDistr ibut ion [(1 / n∗X −
11 Mean[distGamma]) /(StandardDeviation [distGamma]/ Sqrt [n]) ,

12 X \ [D i s t r ibuted] distsumGamma]

13 ActualAlpha [d i s t , \ [Alpha]] :=

14 CDF[d i s t ,

15 Quantile [NormalDistr ibut ion [0 , 1] , \ [Alpha] / 2]] + (1 −
16 CDF[d i s t , Quantile [NormalDistr ibut ion [0 , 1] , 1 − \ [Alpha] / 2]])

17 ActualAlpha [TestStatNorm , \ [Alpha]]

18 ActualAlpha [TestStatGamma , \ [Alpha]]

19 Plot3D [ActualAlpha [TestStatGamma , \ [Alpha]] / . n −> 10 / . \ [Alpha] −>
20 0 .05 , {a , 0 . 1 , 3} , {b , 0 . 1 , 3} ,

21 AxesLabel −> {”a” , ”b” , ” Actual \ [Alpha] ” }]

22 Plot [ActualAlpha [TestStatGamma , \ [Alpha]] / . n −> 10 / . \ [Alpha] −>
23 0 .05 / . b −> 2 , {a , 0 . 1 , 3} ,

24 AxesLabel −> {”a” , ” Actual \ [Alpha] ”} ,

25 Epilog −> {Dashed , Line [{{0 , 0 .05} , {3 , 0 . 05}}]} ,

26 AxesOrigin −> {0 , 0 . 0425}]

27 RobustnessGammaMC [a] :=

28 Count [Table [(1/10∗Total [RandomVariate [GammaDistribution [a , 2] , 1 0]] −
29 Mean[GammaDistribution [a , 2]]) /(StandardDeviation [

30 GammaDistribution [a , 2]] / Sqrt [1 0]) , {10000}] ,

31 x / ; x < Quantile [NormalDistr ibut ion [0 , 1] , 0 . 0 5/2] | |
32 x > Quantile [NormalDistr ibut ion [0 , 1] , 1 − 0 . 05/2]] /10000

33 Plot [RobustnessGammaMC [a] , {a , 0 . 1 , 3} , PlotPoints −> 100 ,

34 MaxRecursion −> 0 , AxesLabel −> {”a” , ” Actual \ [Alpha] ”} ,

35 Epilog −> {Dashed , Line [{{0 , 0 .05} , {3 , 0 . 0 5}}]}]

A.4 Coverage of FD (4)

1 FD4[a , b , c , d] := Trans formedDistr ibut ion [a + b∗Z + c∗Zˆ2 + d∗Zˆ3 , Z \ [D i s t r ibuted]

NormalDistr ibut ion [0 , 1]]

2 Table [Moment [FD4 [a , b , c , d] , p] , {p , 1 , 4}]

3 FD4Coe f f i c i ent s [g3 , g4] := (s o l = NSolve [Table [Moment [FD4 [a , b , c , d] , p] , {p , 1 , 4}]

== {0 , 1 , g3 , g4 } , {a , b , c , d} , Reals] ; I f [Length [s o l] == 0 , {} , s o l [[1]]])

4 FleishmanCoverage = RegionPlot [FD4Coe f f i c i ent s [g3 , g4] != {} , {g3 , 0 , 3} , {g4 , 0 , 20}]

5 Show[{ FleishmanCoverage , Plot [g3ˆ2 + 1 , {g3 , 0 , 3}]}]

53

Appendix B

CUDA source codes

B.1 Declarations

1 #include ” cuda runtime . h”

2 #include ” dev i ce l aunch paramete r s . h”

3

4 #include <s t d i o . h>

5

6 #include <s t d l i b . h>

7 #include <time . h>

8 #include <math . h>

9 #include ” g s l v e c t o r . h”

10 #include ” g s l m u l t i r o o t s . h”

11

12 #define SAMPLESIZE 10

13 #define THREADSPERBLOCK 32

14 #define ITERATIONSPERRUN 100

15

16 #define DCMT SEED 4172

17 #define MT RNG PERIOD 607

18

19 typedef struct {
20 unsigned int matr ix a ;

21 unsigned int mask b ;

22 unsigned int mask c ;

23 unsigned int seed ;

24 } m t s t r u c t s t r i p p e d ;

25

26 #define PI 3.14159265358979 f

27 #define MT RNG COUNT 32768

28 #define MTMM 9

29 #define MT NN 19

30 #define MTWMASK 0xFFFFFFFFU

31 #define MT UMASK 0xFFFFFFFEU

32 #define MT LMASK 0x1U

33 #define MT SHIFT0 12

34 #define MT SHIFTB 7

35 #define MT SHIFTC 15

36 #define MT SHIFT1 18

37

38 d e v i c e stat ic m t s t r u c t s t r i p p e d ds MT [MT RNG COUNT] ;

39 stat ic m t s t r u c t s t r i p p e d h MT[MT RNG COUNT] ;

40 // const unsigned in t SEED = 777; // k i i k t a t v a ld . void seedMTGPU()

41

42 struct fgvparams

43 {
44 f loat skew ;

45 f loat kurt ;

46 } ;

47

48 struct transformparams

54

49 {
50 f loat a ;

51 f loat b ;

52 f loat c ;

53 f loat d ;

54 } ;

B.2 Mersenne twister random number generation

55 void loadMTGPU(const char ∗ fname){
56 FILE ∗ fd = fopen (fname , ” rb”) ;

57 i f (! fd){
58 p r i n t f (”initMTGPU () : f a i l e d to open %s\n” , fname) ;

59 p r i n t f (”TEST FAILED\n”) ;

60 e x i t (0) ;

61 }
62 i f (! f r ead (h MT, s izeof (h MT) , 1 , fd)){
63 p r i n t f (”initMTGPU () : f a i l e d to load %s\n” , fname) ;

64 p r i n t f (”TEST FAILED\n”) ;

65 e x i t (0) ;

66 }
67 f c l o s e (fd) ;

68 }
69

70 unsigned long hash (t ime t t , c l o c k t c)

71 {
72 // Get a uint32 from t and c

73 // Better than uint32 (x) in case x i s f l o a t i n g point in [0 , 1]

74 // Based on code by Lawrence Kirby (fred@genesis . demon . co . uk)

75

76 stat ic unsigned long d i f f e r = 0 ; // guarantee time−based seeds w i l l change

77

78 unsigned long h1 = 0 ;

79 unsigned char ∗p = (unsigned char ∗) &t ;

80 for (s i z e t i = 0 ; i < s izeof (t) ; ++i)

81 {
82 h1 ∗= UCHAR MAX + 2U;

83 h1 += p [i] ;

84 }
85 unsigned long h2 = 0 ;

86 p = (unsigned char ∗) &c ;

87 for (s i z e t j = 0 ; j < s izeof (c) ; ++j)

88 {
89 h2 ∗= UCHAR MAX + 2U;

90 h2 += p [j] ;

91 }
92 return (h1 + d i f f e r++) ˆ h2 ;

93 }
94

95 void seedMTGPU() {
96 int i ;

97 //Need to be thread−sa fe

98 m t s t r u c t s t r i p p e d ∗MT = (m t s t r u c t s t r i p p e d ∗) mal loc (MT RNG COUNT ∗ s izeof (

m t s t r u c t s t r i p p e d)) ;

99

100 for (i = 0 ; i < MT RNG COUNT; i++){
101 MT[i] = h MT[i] ;

102 MT[i] . seed = hash (time (NULL) , c l o ck ()) ;

103 //MT[i] . seed = 777; //csak t e s z t e l e s h e z , hogy ugyanazok legyenek a genera l t

szamok

104 }
105 cudaMemcpyToSymbol (ds MT , MT, s izeof (h MT)) ;

106

107 f r e e (MT) ;

108 }

B.3 Statistical tests

55

109 d e v i c e int OneSampleZTest (f loat ∗ Sample)

110 {
111 f loat sum=0;

112 for (int i =0; i<SAMPLESIZE; i++)

113 sum+=Sample [i] ;

114 i f (abs ((sum/SAMPLESIZE)∗ s q r t ((f loat)SAMPLESIZE)) >1.95996)

115 return 1 ;

116 else

117 return 0 ;

118 }

B.4 Kernel

119 g l o b a l void RobustnessKernel (f loat ∗ d a , struct transformparams∗ params)

120 {
121 const int UniqueBlockIndex = blockIdx . y ∗ gridDim . x + blockIdx . x ;

122 const int UniqueThreadIndex = UniqueBlockIndex ∗ blockDim . x + threadIdx . x ;

123

124 s h a r e d int BlockSum [THREADSPERBLOCK] ;

125 i f (threadIdx . x == 0) {
126 for (int i =0; i<THREADSPERBLOCK; i++)

127 BlockSum [i]=0;

128 }
129 sync th r ead s () ;

130

131 f loat Sample [SAMPLESIZE] ;

132

133 int i S ta te , iS tate1 , iStateM ;

134 unsigned int mti , mti1 , mtiM , x ;

135 f loat x1 , x2 ;

136 unsigned int mt [MT NN] ;

137

138 f loat r , phi ;

139

140 //Load b i t−vector Mersenne Twister parameters

141 m t s t r u c t s t r i p p e d c o n f i g = ds MT [UniqueThreadIndex] ;

142

143 // I n i t i a l i z e current s t a t e

144 mt [0] = c o n f i g . seed ;

145 for (i S t a t e = 1 ; i S t a t e < MT NN; i S t a t e++)

146 mt [i S t a t e] = (1812433253U ∗ (mt [i S t a t e − 1] ˆ (mt [i S t a t e − 1] >> 30)) +

i S t a t e) & MTWMASK;

147

148 i S t a t e = 0 ;

149 mti1 = mt [0] ;

150

151 for (int i t e r =0; i t e r<ITERATIONSPERRUN; i t e r ++) {
152 for (int i =0; i<SAMPLESIZE/2 ; i++) {
153 i S t a t e 1 = i S t a t e + 1 ;

154 iStateM = i S t a t e + MTMM;

155 i f (i S t a t e 1 >= MT NN) iS t a t e 1 −= MT NN;

156 i f (iStateM >= MT NN) iStateM −= MT NN;

157 mti = mti1 ;

158 mti1 = mt [i S t a t e 1] ;

159 mtiM = mt [iStateM] ;

160

161 x = (mti & MT UMASK) | (mti1 & MT LMASK) ;

162 x = mtiM ˆ (x >> 1) ˆ ((x & 1) ? c o n f i g . matr ix a : 0) ;

163 mt [i S t a t e] = x ;

164 i S t a t e = iS ta t e 1 ;

165

166 //Tempering transformation

167 x ˆ= (x >> MT SHIFT0) ;

168 x ˆ= (x << MT SHIFTB) & c o n f i g . mask b ;

169 x ˆ= (x << MT SHIFTC) & c o n f i g . mask c ;

170 x ˆ= (x >> MT SHIFT1) ;

171

172 x1=((f loat) x + 1 .0 f) / 4294967296.0 f ;

173

56

174 i S t a t e 1 = i S t a t e + 1 ;

175 iStateM = i S t a t e + MTMM;

176 i f (i S t a t e 1 >= MT NN) iS t a t e 1 −= MT NN;

177 i f (iStateM >= MT NN) iStateM −= MT NN;

178 mti = mti1 ;

179 mti1 = mt [i S t a t e 1] ;

180 mtiM = mt [iStateM] ;

181

182 x = (mti & MT UMASK) | (mti1 & MT LMASK) ;

183 x = mtiM ˆ (x >> 1) ˆ ((x & 1) ? c o n f i g . matr ix a : 0) ;

184 mt [i S t a t e] = x ;

185 i S t a t e = iS ta t e 1 ;

186

187 //Tempering transformation

188 x ˆ= (x >> MT SHIFT0) ;

189 x ˆ= (x << MT SHIFTB) & c o n f i g . mask b ;

190 x ˆ= (x << MT SHIFTC) & c o n f i g . mask c ;

191 x ˆ= (x >> MT SHIFT1) ;

192

193 x2=((f loat) x + 1 .0 f) / 4294967296.0 f ;

194

195 r = s q r t f (−2.0 f ∗ l o g f (x1)) ;

196 phi = 2 ∗ PI ∗ x2 ;

197 x1 = r ∗ c o s f (phi) ;

198 x2 = r ∗ s i n f (phi) ;

199

200 x1=params [UniqueBlockIndex] . a+params [UniqueBlockIndex] . b∗x1+

params [UniqueBlockIndex] . c∗x1∗x1+params [UniqueBlockIndex] . d∗
x1∗x1∗x1 ;

201 x2=params [UniqueBlockIndex] . a+params [UniqueBlockIndex] . b∗x2+

params [UniqueBlockIndex] . c∗x2∗x2+params [UniqueBlockIndex] . d∗
x2∗x2∗x2 ;

202

203 Sample [i ∗2]=x1 ;

204 Sample [i ∗2+1]=x2 ;

205 }
206 BlockSum [threadIdx . x]+=OneSampleZTest (Sample) ;

207 }
208

209 sync th r ead s () ;

210 i f (threadIdx . x == 0)

211 for (int i =0; i<THREADSPERBLOCK; i++)

212 d a [UniqueBlockIndex]+=BlockSum [i] ;

213 }

B.5 Solving the Fleishman equations

214 int egyen l e t ek (const g s l v e c t o r ∗ x , void∗ params , g s l v e c t o r ∗ f)

215 {
216 const double skew=((struct fgvparams ∗) params) −> skew ;

217 const double kurt =((struct fgvparams ∗) params) −> kurt ;

218 const double a = g s l v e c t o r g e t (x , 0) ;

219 const double b = g s l v e c t o r g e t (x , 1) ;

220 const double c = g s l v e c t o r g e t (x , 2) ;

221 const double d = g s l v e c t o r g e t (x , 3) ;

222 // p r i n t f (” szamok : %f , %f , %f , %f ” ,a , b , c , d) ;

223

224 const double y0=a+c ;

225 const double y1=b∗b+6∗b∗d+15∗d∗d+2∗c∗c−1;

226 const double y2=2∗c ∗(b∗b+24∗b∗d+105∗d∗d+2)−skew ;

227 const double y3=24∗(b∗d+c∗c∗(1+b∗b+28∗b∗d)+d∗d∗(12+48∗b∗d+141∗c∗c+225∗d∗d))−(kurt

−3) ;

228

229 g s l v e c t o r s e t (f , 0 , y0) ;

230 g s l v e c t o r s e t (f , 1 , y1) ;

231 g s l v e c t o r s e t (f , 2 , y2) ;

232 g s l v e c t o r s e t (f , 3 , y3) ;

233

234 return GSL SUCCESS ;

57

235 }
236

237 struct transformparams so lveeqns (struct fgvparams params)

238 {
239 const g s l m u l t i r o o t f s o l v e r t y p e ∗ T;

240 g s l m u l t i r o o t f s o l v e r ∗ s ;

241 s i z e t n=4;

242 s i z e t i t e r =0;

243 int s t a t e ;

244 g s l v e c t o r ∗ x=g s l v e c t o r a l l o c (n) ;

245 g s l v e c t o r s e t (x , 0 , 0 . 0) ;

246 g s l v e c t o r s e t (x , 1 , 1 . 0) ;

247 g s l v e c t o r s e t (x , 2 , 0 . 5) ;

248 g s l v e c t o r s e t (x , 3 , 0 . 5) ;

249 g s l m u l t i r o o t f u n c t i o n F ;

250

251 F. f=&egyen l e t ek ;

252 F. n=4;

253 F. params=¶ms ;

254 T=g s l m u l t i r o o t f s o l v e r d n e w t o n ;

255 s=g s l m u l t i r o o t f s o l v e r a l l o c (T, n) ;

256 g s l m u l t i r o o t f s o l v e r s e t (s ,&F, x) ;

257

258 do {
259 i t e r ++;

260 s t a t e=g s l m u l t i r o o t f s o l v e r i t e r a t e (s) ;

261

262 i f (s t a t e)

263 break ;

264

265 s t a t e=g s l m u l t i r o o t t e s t r e s i d u a l (s−>f , 1 e−5) ;

266 } while (s t a t e==GSL CONTINUE&&i t e r <1000) ;

267

268 g s l v e c t o r ∗ root=g s l m u l t i r o o t f s o l v e r r o o t (s) ;

269 transformparams s o l ;

270 s o l . a=g s l v e c t o r g e t (root , 0) ;

271 s o l . b=g s l v e c t o r g e t (root , 1) ;

272 s o l . c=g s l v e c t o r g e t (root , 2) ;

273 s o l . d=g s l v e c t o r g e t (root , 3) ;

274

275 // so l . d=so l . d/ so l . c ;

276 // so l . c=so l . c/ so l . b ;

277

278 g s l m u l t i r o o t f s o l v e r f r e e (s) ;

279 g s l v e c t o r f r e e (x) ;

280

281 i f (i t e r ==1000) {
282 s o l . a=0;

283 s o l . b=1;

284 s o l . c=0;

285 s o l . d=0;

286 // p r i n t f (” baj van !\n”) ;

287 return s o l ;

288 }
289

290 return s o l ;

291 }

B.6 Main program

292 int main ()

293 {
294 f loat ∗h a ;

295 f loat ∗d a ;

296

297 FILE∗ out = fopen (” output . txt ” , ”w”) ;

298 FILE∗ ParamsOutFile = fopen (” paramsout f i l e . txt ” , ”w”) ;

299

300 c l o c k t timePre , timePost ;

58

301

302 const int SkewGridI terat ions = 32 ;

303 const f loat SkewGridMax = 4 . 0 ;

304 const f loat SkewGridStepSize = SkewGridMax / SkewGridI te rat ions ;

305 const int KurtGr id I t e ra t i ons = 32 ;

306 const f loat KurtGridMax = 2 0 . 0 ;

307 const f loat KurtGridStepSize = KurtGridMax / KurtGr id I t e ra t i ons ;

308 const long MCIterations = 10 ;

309

310 struct fgvparams params ;

311 struct transformparams ∗ so l ,∗ d s o l ;

312

313 f loat skewness ;

314

315 s o l =(struct transformparams ∗) mal loc (SkewGridI terat ions ∗KurtGr id I t e ra t i ons ∗ s izeof (

struct transformparams)) ;

316

317 p r i n t f (”∗∗\n”) ;

318 p r i n t f (”∗∗∗ MONTE CARLO SIMULATIONAL ENVIRONMENT ∗∗∗\n”) ;

319 p r i n t f (”∗∗∗ FOR THE EMPIRICAL INVESTIGATION OF STATISTICAL TESTS ∗∗∗\n”) ;

320 p r i n t f (”∗∗\n”) ;

321 p r i n t f (”\n\n”) ;

322 p r i n t f (”Written by : Tamas Ferenc i \n”) ;

323 p r i n t f (”\ t E−mail : tamas . ferenc i@medstat . hu\n”) ;

324

325 p r i n t f (”\n\n”) ;

326 p r i n t f (”\n∗∗∗ Skewness−k u r t o s i s g r id parameters ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;

327 p r i n t f (”\ t Skewness : from %2.1 f to %2.1 f in %i s t ep s (s tep s i z e : %2.2 f)\n” , 0 . 0 ,

SkewGridMax , SkewGridIterat ions , SkewGridStepSize) ;

328 p r i n t f (”\ t Kurtos i s : from %2.1 f to %2.1 f in %i s t ep s (s tep s i z e : %2.2 f)\n” , 0 . 0 ,

KurtGridMax , KurtGr idI te rat ions , KurtGridStepSize) ;

329 p r i n t f (”∗∗\n”) ;

330

331

332 p r i n t f (”\n\n”) ;

333 p r i n t f (”∗∗∗ So lv ing the Fleishman−equat ions f o r the above g r id ∗∗∗∗∗∗∗∗∗\n”) ;

334 p r i n t f (”\ t S ta r t i ng to s o l v e the nece s sa ry equat ions . . . \ n”) ;

335 for (int i = 0 ; i < SkewGridI te rat ions ; i++) {
336 for (int j = 0 ; j < KurtGr id I t e ra t i ons ; j++)

337 {
338 skewness = i ∗ SkewGridStepSize ;

339 params . skew = skewness ;

340 params . kurt = (2 ∗ skewness ∗ skewness + 3) + j ∗
KurtGridStepSize ;

341 s o l [i ∗ KurtGr id I t e ra t i ons + j] = so lveeqns (params) ;

342 }
343 }
344 p r i n t f (”\ t . . . The s o l v i n g o f nece s sa ry equat ions f i n i s h e d .\n”) ;

345 p r i n t f (”\ t S ta r t i ng to wr i t e c o e f f i c i e n t to s to rage . . . \ n”) ;

346 for (int i =0; i<SkewGridI terat ions ; i++)

347 for (int j =0; j<KurtGr id I t e ra t i ons ; j++)

348 f p r i n t f (ParamsOutFile , ”%f ;% f ;% f ;% f \n” , s o l [i ∗KurtGr id I t e ra t i ons+j

] . a , s o l [i ∗KurtGr id I t e ra t i ons+j] . b , s o l [i ∗KurtGr id I t e ra t i ons+j

] . c , s o l [i ∗KurtGr id I t e ra t i ons+j] . d) ;

349 f c l o s e (ParamsOutFile) ;

350 p r i n t f (”\ t . . . The wr i t i ng o f c o e f f i c i e n t s to s to rage f i n i s h e d .\n”) ;

351 cudaMalloc ((void∗∗)&d so l , SkewGridI te rat ions ∗KurtGr id I t e ra t i ons ∗ s izeof (struct

transformparams)) ;

352 cudaMemcpy(d so l , so l , SkewGridI te rat ions ∗KurtGr id I t e ra t i ons ∗ s izeof (struct

transformparams) , cudaMemcpyHostToDevice) ;

353 p r i n t f (”∗∗\n”) ;

354

355 loadMTGPU(” MersenneTwister . dat”) ;

356 seedMTGPU() ;

357

358 cudaThreadSynchronize () ;

359

360 s i z e t memSize = SkewGridI te rat ions ∗ KurtGr id I t e ra t i ons ∗ s izeof (long) ;

361 h a = (f loat ∗) mal loc (memSize) ;

362 cudaMalloc ((void ∗∗) &d a , memSize) ;

59

363 cudaMemset (d a , 0 , memSize) ;

364

365 p r i n t f (”\n\n”) ;

366 p r i n t f (”\n∗∗∗ I t e r a t i o n parameters ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;

367 p r i n t f (”\ t Threads per block : %i \n” , THREADSPERBLOCK) ;

368 p r i n t f (”\ t I t e r a t i o n s with in s i n g l e ke rne l run : %i \n” , ITERATIONSPERRUN) ;

369 p r i n t f (”\ t Global i t e r a t i o n s : %i \n” , MCIterations) ;

370 p r i n t f (”\ t Number o f t o t a l s i mu l a t i ona l r e p l i c a t i o n s : %i \n” , THREADSPERBLOCK ∗
ITERATIONSPERRUN ∗ MCIterations) ;

371 p r i n t f (”∗∗\n”) ;

372

373 p r i n t f (”\n\n”) ;

374 p r i n t f (”\n∗∗∗ I n v e s t i g a t i o n parameters ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;

375 p r i n t f (”\ t I nv e s t i g a t ed t e s t : One−sample , two−s ided z−t e s t \n”) ;

376 p r i n t f (”\ t Type o f i n v e s t i g a t i o n : Robustness w. r . t . non−normal i ty \n”) ;

377 p r i n t f (”\ t Sample s i z e : %i \n” , SAMPLESIZE) ;

378 p r i n t f (”∗∗\n”) ;

379

380 p r i n t f (”\n\n”) ;

381 p r i n t f (”∗∗∗ GPU informat ion , Device 0 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;

382 cudaDeviceProp deviceProp ;

383 cudaGetDevicePropert ies (&deviceProp , 0) ;

384 p r i n t f (”\ t Name : %s\n” , deviceProp . name) ;

385 p r i n t f (”\ t Total g l oba l memory [GB] : %i \n” , (int) deviceProp . totalGlobalMem

/1000000) ;

386 p r i n t f (”\ t Clock ra t e [MHz] : %i \n” , deviceProp . c lockRate /1000) ;

387 p r i n t f (”∗∗\n”) ;

388

389 p r i n t f (”\n\n”) ;

390 p r i n t f (”∗∗∗ GPU−computation prog r e s s r epor t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;

391 p r i n t f (” S ta r t i ng GPU−computation . . . \ n”) ;

392 dim3 numBlocks (SkewGridIterat ions , KurtGr id I t e ra t i ons) ;

393 dim3 threadsPerBlock (THREADSPERBLOCK) ;

394 timePre = c lock () ;

395 for (int i =0; i<MCIterations ; i++) {
396 f f l u s h (stdout) ;

397 p r i n t f (”\ r Progress : %4.1 f %%” , (f loat) (i) / MCIterations ∗100) ;

398 p r i n t f (” Elapsed time : %i s ” , (c l o ck ()−timePre) /CLOCKS PER SEC) ;

399 i f (i >0)

400 p r i n t f (” Estimated t o t a l time : %i s ” , (c l o ck ()−timePre) /

CLOCKS PER SEC∗MCIterations / i) ;

401 seedMTGPU() ;

402 RobustnessKernel<<< numBlocks , threadsPerBlock >>>(d a , d s o l) ;

403 }
404 timePost = c lock () ;

405 p r i n t f (”\n”) ;

406 p r i n t f (” . . . GPU−computation f i n i s h e d .\n”) ;

407 cudaMemcpy(h a , d a , memSize , cudaMemcpyDeviceToHost) ;

408 p r i n t f (” S ta r t i ng to wr i t e r e s u l t s to s to rage . . . \ n”) ;

409 f p r i n t f (out , ”%i \n” , THREADSPERBLOCK ∗ ITERATIONSPERRUN ∗ MCIterations) ;

410 f p r i n t f (out , ”%i \n” , SkewGridI terat ions) ;

411 f p r i n t f (out , ”%i \n” , KurtGr id I t e ra t i ons) ;

412 f p r i n t f (out , ”%f \n” , SkewGridMax) ;

413 f p r i n t f (out , ”%f \n” , KurtGridMax) ;

414 f p r i n t f (out , ”%f \n” , SkewGridStepSize) ;

415 f p r i n t f (out , ”%f \n” , KurtGridStepSize) ;

416 f p r i n t f (out , ”%i \n” , SAMPLESIZE) ;

417 for (long i = 0 ; i < SkewGridI terat ions ∗ KurtGr id I t e ra t i ons ; i++)

418 f p r i n t f (out , ”%f \n” , h a [i] / (THREADSPERBLOCK ∗ ITERATIONSPERRUN ∗
MCIterations)) ;

419 f c l o s e (out) ;

420 p r i n t f (” . . . The wr i t i ng o f r e s u l t s to s to rage f i n i s h e d .\n”) ;

421 p r i n t f (”∗∗\n”) ;

422

423 cudaFree (d a) ;

424 cudaFree (d s o l) ;

425 f r e e (h a) ;

426 f r e e (s o l) ;

427

428 p r i n t f (”\n\n”) ;

60

429 p r i n t f (”∗∗∗ Summary performance repor t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;

430 p r i n t f (”\ t Number o f hypothes i s t e s t i n g s : %i \n” , THREADSPERBLOCK ∗
ITERATIONSPERRUN ∗ MCIterations) ;

431 p r i n t f (”\ t Number o f random number gene ra t i on s : %i \n” , THREADSPERBLOCK ∗
ITERATIONSPERRUN ∗ MCIterations ∗ SAMPLESIZE) ;

432 p r i n t f (”\ t Required time : %i s (%ih %im)\n” , (timePost−timePre) /CLOCKS PER SEC, (

int) (timePost−timePre) /CLOCKS PER SEC / 3600 , (int) ((timePost−timePre) /

CLOCKS PER SEC) % 3600 / 60) ;

433 p r i n t f (”\ t Speed : %.2 f m i l l i o n hypothes i s t e s t i n g / sec \n” , (f loat) THREADSPERBLOCK

∗ ITERATIONSPERRUN ∗ MCIterations ∗ SkewGridI te rat ions ∗ KurtGr id I t e ra t i ons

/((timePost−timePre) /CLOCKS PER SEC) / 1000000) ;

434 p r i n t f (”∗∗\n”) ;

435

436 p r i n t f (”\n\n”) ;

437 p r i n t f (”∗∗∗ End o f program , pr e s s any key to e x i t ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”) ;

438 getchar () ;

439

440 cudaDeviceReset () ;

441

442 return 0 ;

443 }

61

Appendix C

R source codes

C.1 Visualization of the results

1 RawResult <− read . table (” output . txt ” , dec = ” . ” , sep = ” , ”)

2 Tota lRep l i c a t i on s <− RawResult [1 ,]

3 SkewGridI te rat ions <− RawResult [2 ,]

4 KurtGr id I t e ra t i ons <− RawResult [3 ,]

5 SkewGridMax <− RawResult [4 ,]

6 KurtGridMax <− RawResult [5 ,]

7 SkewGridStepSize <− RawResult [6 ,]

8 KurtGridStepSize <− RawResult [7 ,]

9 SampleSize <− RawResult [8 ,]

10 RawResult <− RawResult [−c (1 :8) ,]

11

12 Result <− matrix (nrow = SkewGridIterat ions , ncol = KurtGr id I t e ra t i ons)

13

14 for (i in 0 : (SkewGridIte rat ions ∗ KurtGr id I t e ra t i ons − 1))

15 Result [i %/% SkewGridI terat ions + 1 , i %% KurtGr id I t e ra t i ons + 1] <− RawResult [

i + 1]

16

17 persp (x = seq (from = 0 , to = SkewGridMax − SkewGridStepSize , by = SkewGridStepSize) ,

18 y = seq (from = 0 , to = KurtGridMax − KurtGridStepSize , by = KurtGridStepSize) ,

19 z = Result , xlab = ”Skewness” , ylab = ” Kurtos i s − (2 ∗ Skewness ˆ2 + 3) ” ,

20 z lab = ”Type I Error Rate” , main=” Robustness o f one−sample , two−s ided t−t e s t w. r . t

. non−normal i ty ” ,

21 sub = paste (”n=” , SampleSize , ” ; based on ” , Tota lRep l i ca t i ons , ” Monte Carlo

s imu la t i on s ” , sep = ””) ,

22 col=” blue ” , z l im = c (0 . 0 2 , 0 . 2) , phi = 20 , theta = 10 , axes = TRUE, t i ck type = ”

d e t a i l e d ” , n t i c k s = 10)

23

24 f i l l e d . contour (x = seq (from = 0 , to = SkewGridMax − SkewGridStepSize , by =

SkewGridStepSize) ,

25 y = seq (from = 0 , to = KurtGridMax − KurtGridStepSize , by =

KurtGridStepSize) ,

26 z = Result , xlab = ”Skewness” , ylab = ” Kurtos i s − (2 ∗ Skewness ˆ2 + 3) ” ,

27 main = ” Robustness o f one−sample , two−s ided t−t e s t w. r . t . non−normal i ty ” ,

28 c o l o r . palette = cm. colors , sub = paste (”n=” , SampleSize , ” ; based on ” ,

Tota lRep l i ca t i ons ,

29 ” Monte Carlo s imu la t i on s ” , sep =

””) ,

30 plot . axis = { axis (1) ; axis (2) ;

31 contour (x = seq (from = 0 , to = SkewGridMax −
SkewGridStepSize , by = SkewGridStepSize) ,

32 y = seq (from = 0 , to = KurtGridMax −
KurtGridStepSize , by = KurtGridStepSize) ,

33 z = Result , add=TRUE, levels = 0.05 , lwd = 2) })

34

35 SkewGridForTrueKurt <− seq (from = 0 , to = 4 , length = 100)

36 T1ErrorRateForTrueKurt <− function (TrueKurt) {
37 return (i n t e rp . s u r f a c e (l i s t (x = seq (from = 0 , to = SkewGridMax − SkewGridStepSize ,

by = SkewGridStepSize) ,

62

38 y = seq (from = 0 , to = KurtGridMax − KurtGridStepSize ,

by = KurtGridStepSize) ,

39 z = Result) , l o c = matrix (c (SkewGridForTrueKurt ,

40 TrueKurt − 2 ∗
SkewGridForTrueKurtˆ2

− 3) ,

41 nc = 2 , byrow = FALSE)))

42 }
43

44 plot (seq (from = 0 , to = SkewGridMax − SkewGridStepSize , by = SkewGridStepSize) , Result

[, 1] , ” l ” ,

45 xlab = ”Skewness” , ylab = ”Type I Error Rate” , ylim = c (0 . 02 , 0 .2) , col = 1 ,

46 main = ” Robustness o f one−sample , two−s ided t−t e s t w. r . t . non−normal i ty ” ,

47 sub = paste (”n=” , SampleSize , ” ; based on ” , Tota lRep l i ca t i ons , ” Monte Carlo

s imu la t i on s ” , sep = ””))

48 abline (h = 0 .05 , l t y = ”dashed”)

49 l ines (seq (from = 0 , to = SkewGridMax − SkewGridStepSize , by = SkewGridStepSize) ,

Result [, 9] , col = 2)

50 l ines (seq (from = 0 , to = SkewGridMax − SkewGridStepSize , by = SkewGridStepSize) ,

Result [, 17] , col = 3)

51 l ines (seq (from = 0 , to = SkewGridMax − SkewGridStepSize , by = SkewGridStepSize) ,

Result [, 25] , col = 4)

52 legend (” t o p l e f t ” , legend = c (” . . . + 0 ” , ” . . . + 5 ” , ” . . .+10 ” , ” . . .+15 ”) , f i l l = 1 : 4 ,

53 t i t l e = ” Kurtos i s : 2 ∗ Skewness ˆ2 + 3 + . . . ”)

54

55 plot (SkewGridForTrueKurt , T1ErrorRateForTrueKurt (5) ,

56 ” l ” , xlab = ”Skewness” , ylab = ”Type I Error Rate” ,

57 main = ” Robustness o f one−sample , two−s ided t−t e s t w. r . t . non−normal i ty ” , ylim = c (

0 . 02 , 0 .2) , col = 1 ,

58 sub = paste (”n=” , SampleSize , ” ; based on ” , Tota lRep l i ca t i ons , ” Monte Carlo

s imu la t i on s ” , sep = ””))

59 abline (h = 0 .05 , l t y = ”dashed”)

60 l ines (SkewGridForTrueKurt , T1ErrorRateForTrueKurt (10) , col = 2)

61 l ines (SkewGridForTrueKurt , T1ErrorRateForTrueKurt (15) , col = 3)

62 l ines (SkewGridForTrueKurt , T1ErrorRateForTrueKurt (20) , col = 4)

63 legend (” t o p l e f t ” , legend = c (”5” , ”10” , ”15” , ”20”) , f i l l = 1 : 4 , t i t l e = ” Kurtos i s ”)

64

65 plot (seq (from = 0 , to = KurtGridMax − KurtGridStepSize , by = KurtGridStepSize) , Result

[1 ,] , ” l ” ,

66 xlab = ” Kurtos i s − (2 ∗ Skewness ˆ2 + 3) ” , ylab = ”Type I Error Rate” , ylim = c (

0 . 02 , 0 .2) , col = 1 ,

67 main = ” Robustness o f one−sample , two−s ided t−t e s t w. r . t . non−normal i ty ” ,

68 sub = paste (”n=” , SampleSize , ” ; based on ” , Tota lRep l i ca t i ons , ” Monte Carlo

s imu la t i on s ” , sep = ””))

69 abline (h = 0 .05 , l t y = ”dashed”)

70 l ines (seq (from = 0 , to = KurtGridMax − KurtGridStepSize , by = KurtGridStepSize) ,

Result [9 ,] , col = 2)

71 l ines (seq (from = 0 , to = KurtGridMax − KurtGridStepSize , by = KurtGridStepSize) ,

Result [17 ,] , col = 3)

72 l ines (seq (from = 0 , to = KurtGridMax − KurtGridStepSize , by = KurtGridStepSize) ,

Result [25 ,] , col = 4)

73 legend (” t o p l e f t ” , legend = c (”0” , ”1” , ”2” , ”3”) , f i l l = 1 : 4 , t i t l e = ”Skewness”)

74

75 plot (seq (from = 0 , to = KurtGridMax − KurtGridStepSize , by = KurtGridStepSize) , Result

[1 ,] , ” l ” ,

76 xlab = ” Kurtos i s ” , ylab = ”Type I Error Rate” , ylim = c (0 . 02 , 0 .2) , col = 1 , xlim

= c (0 , 40) ,

77 main = ” Robustness o f one−sample , two−s ided t−t e s t w. r . t . non−normal i ty ” ,

78 sub = paste (”n=” , SampleSize , ” ; based on ” , Tota lRep l i ca t i ons , ” Monte Carlo

s imu la t i on s ” , sep = ””))

79 abline (h = 0 .05 , l t y = ”dashed”)

80 l ines (seq (from = 2 ∗ 1ˆ2 + 3 , to = 2 ∗ 1ˆ2 + 3 + KurtGridMax − KurtGridStepSize , by =

KurtGridStepSize) ,

81 Result [9 ,] , col = 2)

82 l ines (seq (from = 2 ∗ 2ˆ2 + 3 , to = 2 ∗ 2ˆ2 + 3 + KurtGridMax − KurtGridStepSize , by =

KurtGridStepSize) ,

83 Result [17 ,] , col = 3)

84 l ines (seq (from = 2 ∗ 3ˆ2 + 3 , to = 2 ∗ 3ˆ2 + 3 + KurtGridMax − KurtGridStepSize , by =

KurtGridStepSize) ,

85 Result [25 ,] , col = 4)

63

86 legend (” t o p l e f t ” , legend = c (”0” , ”1” , ”2” , ”3”) , f i l l = 1 : 4 , t i t l e = ”Skewness”)

64

Bibliography

[1] M Abramowitz and I Stegun. Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables. Dover, New York, 1964.

[2] NI Akhiezer. The classical moment problem: and some related questions in analysis. Olivery

& Boyd, 1965.

[3] MS Bartlett. The effect of non-normality on the t distribution. Mathematical Proceedings of

the Cambridge Philosophical Society, 31:223–231, 1935.

[4] NC Beaulieu and F Rajwani. Highly accurate simple closed-form approximations to lognormal

sum distributions and densities. Communications Letters, IEEE, 8(12):709–711, 2004.

[5] JA Claridge and TC Fabian. History and development of evidence-based medicine. World

Journal of Surgery, 29:547–553, 2005.

[6] WS Cleveland. The elements of graphing data. AT&T Bell Laboratories, 1994.

[7] CA Coelho, RP Alberto, and LM Grilo. When do the moments uniquely identify a distribution.

Technical report, New University of Lisbon, 2005.

[8] L Devroye. Non-Uniform Random Variate Generation. Springer, 1st edition, 1986.

[9] R Eckhardt. Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos

Science, 15:131–136, 1987.

[10] W Feller. An Introduction to Probability Theory and Its Applications. Wiley, 3rd edition,

1968.

[11] T Ferenci. The Fleishman family of distributions and its application in the investigations of

tests relevant in biostatistics [in Hungarian]. Presentation at Hungarian Clinical Biostatistical

Society, 24 February 2012, 2012.

[12] A Fleishman. A method for simulating non-normal distributions. Psychometrika, 43(4):521–

532, 1978.

[13] I Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software

Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[14] R Furrer, D Nychka, and S Sain. fields: Tools for spatial data, 2012. R package version 6.7.

[15] M Galassi, J Davies, J Theiler, B Gough, G Jungman, M Booth, and F Rossi. Gnu Scientific

Library: Reference Manual. Network Theory Ltd., 2003.

[16] AK Gayen. The dsitribution of ’student’s’ t in random samples of any size drawn from non-

normal universes. Biometrika, 36(3-4):353–369, 1949.

65

[17] RC Geary. The distribution of ”student’s” ratio for non-normal samples. Supplement to the

Journal of the Royal Statistical Society, 3(2):178–184, 1936.

[18] RC Geary. Testing for normality. Biometrika, 34(3-4):209–242, 1947.

[19] GV Glass, PD Peckham, and JR Sanders. Consequences of failure to meet assumptions un-

derlying the fixed effects analyses of variance and covariance. Review of Educational Research,

42(3):237–288, 1972.

[20] Khronos Group. Opencl - the open standard for parallel programming of heterogeneous sys-

tems. http://www.khronos.org/opencl/, 2012.

[21] A Hald. A history of mathematical statistics from 1750 to 1930. Wiley, 1998.

[22] MR Harwell, EN Rubinstein, WS Hayes, and CC Olds. Summarizing monte carlo results

in methodological research: The one- and two-factor fixed effects anova cases. Journal of

Educational Statistics, 17(4):315–339, 1992.

[23] T Headrick. Fast fifth-order polynomial transforms for generating univariate and multivariate

nonnormal distributions. Computational Statistics & Data Analysis, 40(4):685–711, 2002.

[24] T Headrick. Simulating multivariate nonnormal distributions. Journal of Modern Applied

Statistical Methods, 3:65–71, 2004.

[25] T Headrick. Statistical Simulation: Power Method Polynomials and Other Transformations.

CRC Press, 1st edition, 2009.

[26] T Headrick and R Kowalchuk. The power method transformation: Its probability density

function, distribution function, and its further use for fitting data. Journal of Statistical

Computation and Simulation, 77(3):229–249, 2007.

[27] PJ Huber. Robust Statistics. Wiley Series in Probability and Statistics. Wiley-Interscience,

1981.

[28] N Johnson, S Kotz, and N Balakrishnan. Continuous Univariate Distributions. Wiley, 2nd

edition, 1994.

[29] NJ Johnson. Modified t tests and confidence intervals for asymmetrical populations. Journal

of the American Statistical Association, 73(363):536–544, 1978.

[30] C Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and

Applied Mathematics, 1st edition, 1987.

[31] C Kelley. Solving Nonlinear Equations with Newton’s method. Society for Industrial and

Applied Mathematics, 2nd edition, 2003.

[32] DP Kroese, T Taimre, and ZI Botev. Handbook of Monte Carlo Methods (Wiley Series in

Probability and Statistics). Wiley, 1st edition, 2011.

[33] J Laderman. The distribution of ”student’s” ratio for samples of two items drawn from non-

normal universes. The Annals of Mathematical Statistics, 10(4):376–379, 1939.

[34] BG Lindsay. On the determinants of moment matrices. The Annals of Statistics, 17(2):711–

721, 1989.

66

[35] BG Lindsay and P Basak. Moments determine the tail of a distribution (but not much else).

The American Statistician, 54(4):248–251, 2000.

[36] LM Lix, JC Keselman, and HJ Keselman. Consequences of assumption violations revisited:

A quantitative review of alternatives to the one-way analysis of variance ”f” test. Review of

Educational Research, 66(4):579–619, 1996.

[37] A Luceno. Further evidence supporting the numerical usefulness of characteristic functions.

The American Statistician, 51(3):233–234, 1997.

[38] M Matsumoto and T Nishimura. Dynamic creation of pseudorandom number generators. In

Proceedings of the Third International Conference on Monte Carlo and Quasi-Monte Carlo

Methods in Scientific Computing, pages 56–69, 1998.

[39] P McCullagh. Does the moment-generating function characterize a distribution? The Amer-

ican Statistician, 48(3):208–208, 1994.

[40] N Metropolis. The beginning of the Monte Carlo method. Los Alamos Science, Special Issue,

1987.

[41] L Null and J Lobur. The Essentials of Computer Organization And Architecture. Jones and

Bartlett Publishers, Inc., USA, 2012.

[42] NVIDIA. Cuda. http://www.nvidia.com/object/cuda_home_new.html, 2012.

[43] NVIDIA. CUDA C Programming Guide. NVIDIA Corporation, Santa Clara, CA, USA, 2012.

[44] NVIDIA. NVIDIA GeForce GTX 680 Whitepaper, 2012.

[45] NVIDIA. Tesla Kepler Family Product Overview, 2012.

[46] V Perlo. On the distribution of student’s ratio for samples of three drawn from a rectangular

distribution. Biometrika, 25(1-2):203–204, 193.

[47] MA Pett. Nonparametric Statistics in Health Care Research: Statistics for Small Samples and

Unusual Distributions. SAGE, 1997.

[48] V Podlozhnyuk. Parallel Mersenne Twister. NVIDIA Corporation, 2007.

[49] L Powers and M Snell. Microsoft Visual Studio 2008 Unleashed. SAMS, Carmel, IN, USA,

1st edition, 2008.

[50] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

[51] ST Rachev, SV Stoyanov, and FJ Fabozzi. A Probability Metrics Approach to Financial Risk

Measures. Wiley-Blackwell, 2011.

[52] S Rácz, Á Tari, and M Telek. A moments based distribution bounding method. Mathematical

and Computer Modelling, 43(1112):1367–1382, 2006.

[53] J Reiczigel. On the validity of power simulation based on Fleishman distributions. Poster

at the 33rd Annual Conference of the International Society for Clinical Biostatistics, Bergen,

Norway, 19-23 August 2012, 2012.

67

[54] PR Rider. On the distribution of the ratio of mean to standard deviation in small samples

from non-normal universes. Biometrika, 21(1-4):124–143, 1929.

[55] L Rozsa, J Reiczigel, and G Majoros. Quantifying parasites in sample of hosts. Journal of

Parasitology, 86(2):228–232, 2000.

[56] SS Sawilowsky. You think youve got trivials? Journal of Modern Applied Statistical Methods,

2(1):218–225, 2003.

[57] JA Shohat and JD Tamarkin. The Problem of Moments. American Mathematical Society,

1970.

[58] TOP500 Supercomputer Sites. Statistics / sublist generator. http://www.top500.org/

statistics/sublist/, 2012.

[59] CD Sutton. Computer-intensive methods for tests about the mean of an asymmetrical distri-

bution. Journal of the American Statistical Association, 88(423):802–810, 1993.

[60] L Szirmay-Kalos and L Szécsi. General Purpose Computing on Graphics Processing Units,

pages 1451–1495. mondAt Kiadó, 2011.

[61] P Tadikamalla. On simulating non-normal distributions. Psychometrika, 45:273–279, 1980.

[62] ML Tiku and WY Tan. Sampling distributions in terms of Laguerre polynomials with appli-

cations. New Age International, New Delhi, 1999.

[63] C Vale and V Maurelli. Simulating multivariate nonnormal distributions. Psychometrika,

48:465–471, 1983.

[64] L Waller. Does the characteristic function numerically distinguish distribution? The American

Statistician, 49(2):150–152, 1995.

68

